3.5相似三角形的应用.ppt_第1页
3.5相似三角形的应用.ppt_第2页
3.5相似三角形的应用.ppt_第3页
3.5相似三角形的应用.ppt_第4页
3.5相似三角形的应用.ppt_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,3.5 相似三角形的应用,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1. 能够利用相似三角形的知识,求出不能直接测量 的物体的高度和宽度. (重点) 2. 进一步了解数学建模思想,能够将实际问题转化 为相似三角形的数学模型,提高分析问题、解决 问题的能力. (难点),乐山大佛,导入新课,图片引入,世界上最高的树 红杉,台湾最高的楼 台北101大楼,世界上最宽的河 亚马逊河,怎样测量河宽?,问题: 如图,A, B 两点分别位于一个池塘的两端,小张想测量出A, B 间的距离,但由于受条件限制无法直接测量,你能帮他想出一个可行的测量办法吗?,A,B,如图,在池塘外取一点C,使它可以直接看到

2、A, B 两点,连接并延长AC,BC,在AC的延长线上取一点D,在BC的延长线上取一点E,使测量出DE的长度后,就可以由相似三角形的有关知识求出A, B 间的距离了.,讲授新课,例1 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点 P,在近岸取点 Q 和 S,使点 P,Q,S共线且直线 PS 与河垂直,接着在过点 S 且与 PS 垂直的直线 a 上选择适当的点 T,确定 PT 与过点 Q 且垂直 PS 的直线 b 的交点 R. 已知 测得QS = 45 m,ST = 90 m, QR = 60 m,请根据这些数据, 计算河宽 PQ.,PQ90 = (PQ+45)60. 解得 PQ =

3、90. 因此,河宽大约为 90 m.,解:PQR =PST =90,P=P,,PQRPST., ,,即 ,,45m,90m,60m,例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点 A,再在河的这一边选点 B 和 C,使 ABBC,然后,再选点 E,使 EC BC ,用视线确定 BC 和 AE 的交点 D,此时如果测得 BD120米,DC60米,EC50米, 求两岸间的大致距离 AB,解: ADBEDC,,ABCECD90,, ABDECD., ,即 ,,解得 AB = 100.,因此,两岸间的大 致距离为 100 m.,测量如河宽等不易直接测量的物体的宽度,常构造相似三角形求

4、解.,归纳:,据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.,例3 如图,木杆 EF 长 2 m,它的影长 FD 为3m,测得 OA 为 201 m,求金字塔的高度 BO.,怎样测出 OA 的长?,解:太阳光是平行的光线,因此 BAO =EDF.,又 AOB =DFE = 90,ABO DEF., ,,=134 (m).,因此金字塔的高度为 134 m.,表达式:物1高 :物2高 = 影1长 :影2长,测高方法一:,测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.,归

5、纳:,例4:如图,小明为了测量一棵树CD的高度,他在距树24m处立了一根高为2m的标杆EF,然后小明前后调整自己的位置,当他与树相距27m的时候,他的眼睛、标杆的顶端和树的顶端在同一条直线上.已知小明的眼高1.6m,求树的高度.,分析:人、树、标杆是相互平行的,添加辅助线,过点A作ANBD交ID于N,交EF于M,则可得AEMACN.,A,E,C,D,F,B,N,A,E,C,D,F,B,N,解:过点A作ANBD交CD于N,交EF于M,因为人、标杆、树都垂直于地面, ABF=EFD=CDF=90, ABEFCD, EMA=CNA. EAM=CAN, AEMACN , . AB=1.6m , EF=

6、2m , BD=27m , FD=24m , , CN=3.6(m), CD=3.6+1.6=5.2(m). 故树的高度为5.2m.,1. 如图,要测量旗杆 AB 的高度, 可在地面上竖一根竹竿 DE, 测量出 DE 的长以及 DE 和 AB 在同一时刻下地面上的影长即 可,则下面能用来求AB长的等 式是 ( ) A B C D,C,练一练,2. 如图,九年级某班数学兴趣小组的同学想利用所学 数学知识测量学校旗杆的高度,当身高 1.6 米的楚 阳同学站在 C 处时,他头顶端的影子正好与旗杆 顶端的影子重合,同一时刻,其他成员测得 AC = 2 米,AB = 10 米,则旗杆的高度是_米,8,A

7、,F,E,B,O,还可以有其他测量方法吗?,=,ABOAEF,OB =,平面镜,想一想:,测高方法二:,测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.,如图是小明设计用手电来测量某古城墙高度的示意图,点 P 处放一水平的平面镜,光线从点 A出发经平面镜反射后,刚好射到古城墙的顶端 C 处,已知 AB = 2 米,且测得 BP = 3 米,DP = 12 米,那么该古城墙的高度是 ( ) A. 6米 B. 8米 C. 18米 D. 24米,B,试一试:,例5 如图,左、右并排的两棵大树的高分别是 AB = 8 m 和 CD = 12 m,两树底部的距离 BD = 5

8、 m,一个人估计自己眼睛距离地面 1.6 m,她沿着正对这两棵树的一条水平直路 l 从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C 了?,分析:如图,设观察者眼睛的位置 (视点) 为点 F,画出观察者的水平视线 FG,它交 AB,CD 于点 H,K. 视线 FA,FG 的夹角 AFH 是观察点 A 的仰角. 类似地,CFK 是观察点 C 时的仰角,由于树的遮挡,区域和都在观察者看不到的区域 (盲区) 之内. 再往前走就根本看不到 C 点了.,由此可知,如果观察者继续前进, 当她与左边的树的距离小于 8 m 时,由于这棵树 的遮挡,就看不到右边树的顶端 C .,解:如图,假设观察者从左向右走到点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论