版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、微专题47多变量表达式的范围放缩消元法一、基础知识: 在有些多变量表达式的题目中,所提供的条件为不等关系,则也可根据不等关系进行消元,从而将多变量表达式转化为一元表达式,便于求得最值1、放缩法求最值的理论基础: 不等式的传递性:若,则 2、常见的放缩消元手段:(1)抓住题目中的不等关系,若含有两个变量间的不等关系,则可利用这个关系进行放缩消元(2)配方法:通过利用“完全平方式非负”的特性,在式子中构造出完全平方式,然后令其等于0,达到消元的效果(3)均值不等式:构造能使用均值不等式的条件,利用均值不等式达到消元的效果(4)主元法:将多元表达式视为某个变量(即主元)的函数,剩下的变量视为常数,然
2、后利用常规方法求得最值从而消去主元,达到消元的效果。3、放缩消元过程中要注意的地方:(1)在放缩过程中应注意所求最值与不等号方向的对应关系,例如:若求最小值,则对应的不等号为“”;若求最大值,则对应的不等号为“”。放缩的方向应与不等号的方向一致(2)对进行放缩消元后的式子,要明确是求其最大值还是最小值。放缩法求最值的基础是不等式的传递性,所以在求最值时要满足其不等号的方向一致。若将关于 的表达式进行放缩消去,得到,例如,则下一步需要求出的最小值(记为),即,通过不等式的传递性即可得到。同理,若放缩后得到:,则需要求出的最大值(记为),即,然后通过不等式的传递性得到(3)在放缩的过程中,要注意每
3、次放缩时等号成立的条件能够同时成立,从而保证在不等式中等号能够一直传递下去二、典型例题:例1:设集合中的最大元素与最小元素分别为,则的值为_思路:考虑分别求出的最大值与最小值,先求的最大值,只需取最小,取最大:即 ,再求的最小值,由可知利用进行放缩,从而消去,可得:,再利用均值不等式可得:,所以的最小值,从而 答案: 例2:已知是任意三点,则的最小值是_思路:因为,所以结合不等号的方向可将消去,从而转化为关于的表达式:,然后可从出发,构造出与第一项互为倒数的性质以便于利用均值不等式解出最值:,从而有:,所以答案: 例3:设实数满足,则的最大值为_思路:由可联想到与的关系,即,所以,然后可利用进
4、一步放缩消元,得,在利用即可得到最大值:,所以的最大值为,其中等号成立条件为: 答案:小炼有话说:本题也可从入手,进行三角换元:,由可得,然后根据不等号的方向进行连续放缩,消去 即可得到最值:例4:已知关于的一元二次不等式在实数集上恒成立,且,则的最小值为( )A. B. C. D. 思路:由不等式恒成立可得:,结合所求表达式和不等号方向可知更易于消去,即,所以,对于该其次分式可两边同时除以,可得:,令由可知从而将问题转化为求的最小值。,从而 答案:D小炼有话说:本题的关键之处在于选择消去的元,如果选择,则因分式中含的项较多,消元会比较复杂,不利于求得最值。所以处理多变量表达式的最值时,选择消
5、去合适的元是关键例5(2010,四川)设,则的最小值为( )A. B. C. D. 思路:表达式含变量个数较多,且没有等量条件消元,所以考虑式子中是否存在不等关系来减少变量个数,观察式子可发现存在完全平方式,即,从而消去了,得,然后根据分母特征:构造,由均值不等式得:,验证等号成立条件:,从而最小值为答案:D小炼有话说:本题在处理的最值时还可以从分式入手:,从而对分母利用均值不等式:消去,所以例6:已知正数满足,则的最小值是_思路:所求表达式涉及3个变量,首先确定主元,通过观察可发现分母中的可与条件中的具备不等关系,而可用表示,且不等号的方向与所求一致,故考虑利用不等式进行放缩消元,进而得到关
6、于的表达式求得最值解:,因为 所以有 (等号成立条件: )例7:设,且,则的最大值是_ 思路:本题虽然有3个变量,但可通过进行消元,观察所求式子项的次数可知消去更方便,从而可得。然后可使用“主元法”进行处理,将视为主元,即但本题要注意的取值范围与相关,即,通过配方(或求导)可知的最大值在边界处取得,即,从而达到消去的效果,再求出中的最大值即可解: 设 为的极小值点 其中设若 可得:例8:已知函数 (1)求的解析式及单调区间(2)若不等式恒成立,求的最大值解:(1),代入可得: ,令可得: ,可知 在上单调递增 时, 时,在单调递减,在单调递增(2)恒成立的不等式为:即 设 ,令,即解不等式 若
7、,可解得 在单调递减,在单调递增 下面求的最大值令,设 令,可解得 在单调递增,在单调递减 当时,可得 当时, 为增函数且时, ,与恒成立矛盾综上所述:的最大值为 例9:已知函数,求的最小值思路:在多元表达式中不易进行变形消元,观察到变量存在二次函数的结构,所以考虑利用“主元法”,将视为自变量,视为参数,通过配方,并利用完全平方数的特征消去,从而得到关于的函数,然后求得最小值即可。解: 设设,可知 在单调递减,在单调递增 恒成立令,即解不等式在单调递减,在单调递增即的最小值为例10:已知函数(1)若在上的最大值和最小值分别记为,求(2)设,若对恒成立,求的取值范围解:(1) 当时,可得 在单调递增 当时,可得:在单调递减,在单调递增由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫生院廉政风险防控制度
- 乡卫生院艾滋病规章制度
- 肝纤维化无创诊断模型建立与验证
- 阑尾切除术后患者整体护理的质量控制
- 中国湖仓一体行业市场规模及发展前景研究报告(智研咨询)
- 2026年营销策划师技能测试题集营销策略制定实战模拟题及答案202X
- 职业苯系物骨髓抑制的健康促进策略
- 公安宣传稿件培训
- 蚌埠2025年安徽蚌埠五河县人民医院招聘卫生专业技术人员笔试历年参考题库附带答案详解
- 盐城2025年江苏盐城市第三人民医院招聘专技人员19人(第二批)笔试历年参考题库附带答案详解
- 2026重庆高新开发建设投资集团招聘3人备考考试试题及答案解析
- 2026年度宣城市宣州区森兴林业开发有限公司第一批次员工公开招聘笔试参考题库及答案解析
- 老年人管理人员培训制度
- 2025年湖南常德市鼎城区面向全市选调8名公务员备考题库及答案详解(新)
- 2026年高考时事政治时事政治考试题库及答案(名校卷)
- 2026年新能源汽车动力电池回收体系构建行业报告
- 2026四川成都市锦江区国有企业招聘18人笔试备考试题及答案解析
- 2025学年度人教PEP五年级英语上册期末模拟考试试卷(含答案含听力原文)
- 企业内部承包责任制管理办法
- 胰岛细胞瘤课件
- 生鲜采购员知识培训内容课件
评论
0/150
提交评论