版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4 THE EIGENVALUE PROBLEM,Overview,In section 4.4 we move on to the general case, the eigenvalue problem for (nn) matrices. The general case requires several results from determinant theory, and these are summarized in section 4.2.,The eigenvalue problem is of great practical importance in mathematic
2、s and applications.,In section 4.1 we introduce the eigenvalue problem for the special case of (22) matrices; this special case can be handled using ideas developed in Chapter 1.,Core sections,The eigenvalue problem for (22) matrices Eigenvalues and the characteristic polynomial Eigenvectors and eig
3、enspaces Similarity transformations and diagonalization,4.1 The eigenvalue problem for (22) matrices,All scalars,Nonzero solution/ Infinitely many solution,1. The eigenvalue problem,The Geometric interpretation of Eigenvalue and eigenvector,The calculation of Eigenvalue and eigenvector,Homogeneous S
4、ystems,Eigenvalue and eigenvectors for (22) matrices,Example: Find all eigenvalues and eigenvectors of A, where,4.2 Determinants and the eigenvalue problem (omit),4.3 Elementary operations and determinants (omit),4.4 Eigenvalues and the characteristic polynomial,Example: Use the singularity test to
5、determine the eigenvalues of the matrix A, where,In this section we focus on part 1, finding the eigenvalues.,The characteristic polynomial,characteristic polynomial,characteristic equation,(1) an (nn) matrix can have no more than n distinct eigenvalues.,(2) an (nn) matrix always has at least one ei
6、genvalue.,Special Results,4.5 Eigenvectors and Eigenspaces,Eigenspaces and Geometric Multiplicity,Example Determine the algebraic and geometric multiplicities for the eigenvalues of A,Proof:,Corollary: Let A be an (nn) matrix. If A has n distinct eigenvalues, then A has a set of n linearly independe
7、nt eigenvectors.,4.7 Similarity Transformations And Diagonalization,In Chapter 1, we saw that two linear systems of equations have the same solution if their augmented matrices are row equivalent. In this chapter, we are interested in identifying classes of matrices that have the same eigenvalues.,D
8、efinition: The (nn) matrices A and B are said to be similar (denoted AB) if there is a nonsingular (nn) matrix S such that B=S-1AS.,Similarity,Theorem: If A and B are similar (nn) matrices, then A and B have the same eigenvalues. Moreover, these eigenvalues have the same algebraic multiplicity.,Note
9、: not generally have the same eigenvectors.,D is a diagonal matrix.,Diagonalization,Theorem: An (nn) matrix A is diagonalizable if and only if A possesses a set of n linearly independent eigenvectors.,Theorem: Let A be an (nn) matrix with n distinct eigenvalues. Then A is diagonalizable.,Whenever an
10、 (nn) matrix A is similar to a diagonal matrix, we say that A is diagonalizable.,Proof:,Proof:,Example Show that A is diagonalizable ,where,Orthogonal Matrices,A remarkable and useful fact about symmetric matrices is that they are always diagonalizable. Moreover, the diagonalization of a symmetric m
11、atrix A can be accomplished with a special type of matrix know as an orthogonal matrix.,Definition: A real (nn) matrix Q is called an orthogonal matrix if Q is invertible and Q-1=QT.,Theorem: Let Q be an (nn) orthogonal matrix. If X is in Rn, then |Q X |=| X |. If X and Y are in Rn , then (Q X)T(QY)
12、= X TY. det(Q)=1.,Diagonalizaiton of Symmetric Matrices,We conclude this section by showing that every symmetric matrix can be diagonalized by an orthogonal matrix.,Theorem: Let A be an (nn) real symmetric matrix, then the eigenvalues of A are real. (P319),Corollary: Let A be a real (nn) symmetric matri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年通信行业服务连续性管理与优化试题
- 2026年计算机程序设计及开发实践题库
- 2026年一级建造师工程成本控制与预算实务题集
- 2026年公共关系PR策略规划与执行模拟题
- 天上的星星课件解析
- 外贸贸易术语知识
- 2026年青岛酒店管理职业技术学院单招综合素质考试备考题库含详细答案解析
- 2026年江西建设职业技术学院单招综合素质笔试模拟试题含详细答案解析
- 2026年白银矿冶职业技术学院单招综合素质考试备考试题含详细答案解析
- 2026年湖南商务职业技术学院单招综合素质笔试备考题库含详细答案解析
- 2025-2026学年北京市昌平区高三(上期)期末考试英语试卷(含答案)
- 粉尘防爆教育培训制度
- 企业安全生产标准化建设与实施手册(标准版)
- 2025年土地租赁居间服务合同
- 五个带头方面问题清单(二)
- 广东省衡水金卷2025-2026学年高三上学期12月联考物理试题(含答案)
- 扁鹊凹凸脉法课件
- 北京市2025北京市体育设施管理中心应届毕业生招聘2人笔试历年参考题库典型考点附带答案详解(3卷合一)2套试卷
- 2026届广东省江门市普通高中化学高二第一学期期末调研模拟试题含答案
- 专题02 轻松破解求函数值域或最值的十大题型(高效培优专项训练)数学北师大版2019必修第一册(解析版)
- 2026届山东菏泽一中高三化学第一学期期末达标测试试题含解析
评论
0/150
提交评论