说明书.wps

控制器壳体盖塑料模具设计【22张CAD图纸和说明书】

收藏

资源目录
跳过导航链接。
控制器壳体盖塑料模具设计【22张CAD图纸和说明书】.rar
说明书.wps---(点击预览)
初期报告.doc---(点击预览)
中期报告.doc---(点击预览)
三维图.wps---(点击预览)
外文原文及翻译
论文插图
231.png
biantuigan.png
chaizhuangtu1.png
chaizhuangtu2.png
chx.png
chx2.png
db.png
dd.png
dmb.png
dmb1.png
dmb11.png
dwh.png
dz.png
fwg.png
fwg1.png
gudban.png
jd.png
jd2.png
jkt.png
jkt11.png
jkt2.png
ktg1.png
ktg2.png
ktg3.png
ktg4.png
ktgzpt.png
llg.png
lm.png
lm2.png
QQ截图20130312212822.png
QQ截图20130514223636.png
QQ截图20130514224152.png
th.png
th2.png
xj.png
xx.png
xx2.png
zpt2.png
型腔3D.png
型芯3D.png
复位杆3D.png
导套3D.png
导柱3D.png
拉料杆3D.png
推杆3D.png
装配3D.png
PROE零件.rar
工艺卡片.dwg
毕业设计二维图22张.dwg
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

摘   要本次设计题目控制器壳体盖塑料模具设计,根据塑料制品的要求,了解塑件的用途,分析塑件的工艺性、尺寸精度等技术要求,选择塑件制件尺寸。本模具采用一出二件,侧入式浇口进料,注射机采用海天120W1×B型号,设置冷却系统,CAD和PROE绘制二维总装图和零件图,选择模具合理的加工方法。附上说明书,系统地运用简要的文字,简明的示意图和和计算等分析塑件,从而作出合理的模具设计。关键词:机械设计;模具设计;CAD绘制二维图;PROE绘制3D图,注射机的选择The controller housing cover plastic mold designAbstractThe title of the thesis is the design of the controller housing which used plastic mould,To understand the use of plastic parts in accordance with the requirements of the plastic products, analysis of the technical requirements of the plastic parts of the process, dimensional accuracy, select the workpiece size of the plastic parts. The mold using a two side gate feed injection machine adopts Haitian the 120W1×B models, and set a cooling system, CAD and PROE drawing two-dimensional assembly diagram and parts diagram, reasonable mold processing methods. Attach a manual, use brief text, a concise diagram and calculated analysis of plastic parts, in order to make a reasonable mold design.Keywords: mechanical design; mold design; CAD drawing two-dimensional map; PROE draw 3D maps, injection machine selection主要符号            额定锁模                        模腔压力           安全系数                      最小模具厚度         最大模具                        塑件尺寸误差         塑料的最大收缩率              塑料的最小收缩率    塑件尺寸                        塑料的平均收缩率     塑料的公差                       模具制造公差   型腔许用变形量                  型腔材料的弹性模量   型腔材料的需用压力              脱模斜度     摩擦系数                       脱模力     推杆长度系数                   总脱模力     应力                           屈服极限强度目  录1  绪论11.1塑料简介11.2注塑成型及注塑模11.3本文主要研究内容22  塑料材料分析32.1塑料材料的基本特性32.2塑件材料成型性能32.3塑件材料主要用途43  塑件的工艺分析5    3.1塑件尺寸及精度63.2塑件表面粗糙度63.3塑件的体积和质量74  注射成型工艺方案及成型零件设计84.1注射成型工艺过程分析84.2浇口种类的确定84.3型腔数目的确定94.4注射机的选择和校核9       4.4.1注射量的校核10       4.4.2塑件在分型面上的投影面积与锁模力的校核10       4.4.3模具与注射机安装模具部分相关尺寸校核115  导向机构的设计135.1导向机构的作用135.2导柱导向机构13       5.2.1导向机构的总体设计13       5.2.2导柱的设计14       5.2.3导套的设计146  注射模具结构设计156.1分型面的设计156.2型腔的布局156.3浇注系统的设计16       6.3.1浇注系统设计的组成及要求16       6.3.2主流道设计166.4分流道设计17       6.4.1分流道设计要点18       6.4.2分流道的形状和尺寸18       6.4.3分流道的表面粗糙度19       6.4.4冷料穴的设计196.5注射模成型零部件的设计19       6.5.1成型零部件结构设计19       6.5.2成型零部件工作尺寸的计算20    6.6排气结构设计236.7脱模机构的设计23       6.7.1脱模机构的选用原则23       6.7.2脱模机构类型的选择24       6.7.3脱模力的计算24       6.7.4推杆机构具体设计246.8注射模温度调节系统25       6.8.1温度调节对塑件质量的影响25       6.8.2冷却系统之设计规则266.9模架的选用267  模具材料的选用287.1成型零件材料选用287.2注射模用钢种288  模具工作过程30总结32参考文献33致谢35毕业设计(论文)知识产权声明36毕业设计(论文)独创性声明371  绪论现代工业的飞速发展为素有“工业之母”美誉的模具工业带来前所未有的发展机遇,而模具材料的应用在模具制造中起举足轻重的作用。塑料,作为重要的模具材料之一,随着家电、汽车、电子、电器、通讯产品的迅猛发展而得到更为广泛的应用。塑料模具,成为时下模具品种之“关键词”。在此背景下,如何更深入地认识塑料模具的发展状况并把握其市场走向,成为重要课题。随着中国汽车、家电、电子通讯、各种建材的迅速发展与国民经济的快速增长,在未来的模具市场中,塑料模具在模具总量中的比例将进一步提高,其发展速度将快于其他模具种类,塑料模具的加工与生产将形成遍地开花之势模具制造是国家经济建设中的一项重要产业,振兴和发展我国的模具工业,日益受到人们的重视和关注。“模具是工业生产的基础工艺装备”也已经成为广大业内人士的共识。
编号:10109142    类型:共享资源    大小:16.80MB    格式:RAR    上传时间:2018-05-17 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
控制器 壳体 塑料 模具设计 22 cad 图纸 以及 说明书 仿单
资源描述:

摘   要

本次设计题目控制器壳体盖塑料模具设计,根据塑料制品的要求,了解塑件的用途,分析塑件的工艺性、尺寸精度等技术要求,选择塑件制件尺寸。本模具采用一出二件,侧入式浇口进料,注射机采用海天120W1×B型号,设置冷却系统,CAD和PROE绘制二维总装图和零件图,选择模具合理的加工方法。附上说明书,系统地运用简要的文字,简明的示意图和和计算等分析塑件,从而作出合理的模具设计。


关键词:机械设计;模具设计;CAD绘制二维图;PROE绘制3D图,注射机的选择







The controller housing cover plastic mold design

Abstract

The title of the thesis is the design of the controller housing which used plastic mould,To understand the use of plastic parts in accordance with the requirements of the plastic products, analysis of the technical requirements of the plastic parts of the process, dimensional accuracy, select the workpiece size of the plastic parts. The mold using a two side gate feed injection machine adopts Haitian the 120W1×B models, and set a cooling system, CAD and PROE drawing two-dimensional assembly diagram and parts diagram, reasonable mold processing methods. Attach a manual, use brief text, a concise diagram and calculated analysis of plastic parts, in order to make a reasonable mold design.

Keywords: mechanical design; mold design; CAD drawing two-dimensional map; PROE draw 3D maps, injection machine selection








主要符号

            额定锁模                        模腔压力

           安全系数                      最小模具厚度

         最大模具                        塑件尺寸误差

         塑料的最大收缩率              塑料的最小收缩率

    塑件尺寸                        塑料的平均收缩率

     塑料的公差                       模具制造公差

   型腔许用变形量                  型腔材料的弹性模量

   型腔材料的需用压力              脱模斜度

     摩擦系数                       脱模力

     推杆长度系数                   总脱模力

     应力                           屈服极限强度






目  录

1  绪论 1

1.1塑料简介 1

1.2注塑成型及注塑模 1

1.3本文主要研究内容 2

2  塑料材料分析 3

2.1塑料材料的基本特性 3

2.2塑件材料成型性能 3

2.3塑件材料主要用途 4

3  塑件的工艺分析 5

    3.1塑件尺寸及精度 6

3.2塑件表面粗糙度 6

3.3塑件的体积和质量 7

4  注射成型工艺方案及成型零件设计 8

4.1注射成型工艺过程分析 8

4.2浇口种类的确定 8

4.3型腔数目的确定 9

4.4注射机的选择和校核 9

       4.4.1注射量的校核 10

       4.4.2塑件在分型面上的投影面积与锁模力的校核 10

       4.4.3模具与注射机安装模具部分相关尺寸校核 11

5  导向机构的设计 13

5.1导向机构的作用 13

5.2导柱导向机构 13

       5.2.1导向机构的总体设计 13

       5.2.2导柱的设计 14

       5.2.3导套的设计 14

6  注射模具结构设计 15

6.1分型面的设计 15

6.2型腔的布局 15

6.3浇注系统的设计 16

       6.3.1浇注系统设计的组成及要求 16

       6.3.2主流道设计 16

6.4分流道设计 17

       6.4.1分流道设计要点 18

       6.4.2分流道的形状和尺寸 18

       6.4.3分流道的表面粗糙度 19

       6.4.4冷料穴的设计 19

6.5注射模成型零部件的设计 19

       6.5.1成型零部件结构设计 19

       6.5.2成型零部件工作尺寸的计算 20

    6.6排气结构设计 23

6.7脱模机构的设计 23

       6.7.1脱模机构的选用原则 23

       6.7.2脱模机构类型的选择 24

       6.7.3脱模力的计算 24

       6.7.4推杆机构具体设计 24

6.8注射模温度调节系统 25

       6.8.1温度调节对塑件质量的影响 25

       6.8.2冷却系统之设计规则 26

6.9模架的选用 26

7  模具材料的选用 28

7.1成型零件材料选用 28

7.2注射模用钢种 28

8  模具工作过程 30

总结 32

参考文献 33

致谢 35

毕业设计(论文)知识产权声明 36

毕业设计(论文)独创性声明 37



1  绪论

现代工业的飞速发展为素有“工业之母”美誉的模具工业带来前所未有的发展机遇,而模具材料的应用在模具制造中起举足轻重的作用。塑料,作为重要的模具材料之一,随着家电、汽车、电子、电器、通讯产品的迅猛发展而得到更为广泛的应用。塑料模具,成为时下模具品种之“关键词”。在此背景下,如何更深入地认识塑料模具的发展状况并把握其市场走向,成为重要课题。随着中国汽车、家电、电子通讯、各种建材的迅速发展与国民经济的快速增长,在未来的模具市场中,塑料模具在模具总量中的比例将进一步提高,其发展速度将快于其他模具种类,塑料模具的加工与生产将形成遍地开花之势模具制造是国家经济建设中的一项重要产业,振兴和发展我国的模具工业,日益受到人们的重视和关注。“模具是工业生产的基础工艺装备”也已经成为广大业内人士的共识。


内容简介:
temperaturePujos,Cedex,greatmoldingnumercoolingis toeffectandqualityfastestlar industrieincreasewell knowneconomicallymer melt sufficiently so that the part can be ejected without anysignificant deformation 2. An efficient cooling system design ofthe cooling channels aiming at reducing cycle time must minimizesuch undesired defects as sink marks, differential shrinkage, ther-mal residual stress built-up and part warpage. During the post-fill-ing and cooling stages of injection molding, hot molten polymertouches the cold mold wall, and a solid layer forms on the wall.tion to the coolant moving through the cooling channels and bynatural convection to the air around the exterior mold surface.The coolant is flowing through the channels at a given flow rateand a given temperature which is considered constant throughoutthe length of the channel. In this work, time-dependenttwo-dimensional model is considered which consists of an entirecomputational domain of the cavity, mold and cooling channelsurfaces. The cyclic transient temperature distribution of the moldand polymer T-shape can be obtained by solving the transientenergy equation.* Corresponding author. Tel.: +330540006348; fax: +330540002731.Applied Thermal Engineering 29 (2009) 17861791Contents lists availableE-mail address: hassanenscpb.fr (H. Hassan).cess where polymer is injected into a mould cavity, and solidifiesto form a plastic part. There are three significant stages in each cy-cle. The first stage is filling the cavity with melt hot polymer at aninjection temperature (filling and post-filling stage). It is followedby taking away the heat of the polymer to the cooling channels(cooling stage), finally the solidified part is ejected (ejection stage).The cooling stage is of the greatest importance because it signifi-cantly affects the productivity and the quality of the final product.It is well known that more than seventy percent of the cycle timein the injection molding process is spent in cooling the hot poly-distribution of the mold and polymer, therefore, their effect onthe solidification degree of that polymer. A fully transient moldcooling analysis is performed using the finite volume method fora T-shape plastic mold with similar dimensions to 5, as shownin Fig. 1. Different cooling channels positions and forms arestudied.2. Mathematical modelThe heat of the molten polymer is taken away by forced convec-1. IntroductionPlastic industry is one of the worldsranked as one of the few billion-dolinjection molded parts continues toplastic injection molding process iscient manufacturing techniques forprecision plastic parts with various shapesat low cost 1.The plastic injection molding1359-4311/$ - see front matter C211 2008 Elsevier Ltd. Alldoi:10.1016/j.applthermaleng.2008.08.011growing industries,s. Demand forevery year becauseas the most effi-producing ofand complex geometryprocess is a cyclic pro-As the material cools down, the solid skin begins to grow withincreasing time as the cooling continues until the entire materialsolidifies. Over the years, many studies on the problem of the opti-mization of the cooling system layout in injection molding andphase change of molding process have been made by variousresearchers and ones which focused intensity on these topicsand will used in our system design and validations are 36.The main purpose of this paper is to study the effect of the coolingchannels position and its cross section shape on the temperatureCooling systemleads to minimum cooling time is not achieving uniform cooling throughout the mould.C211 2008 Elsevier Ltd. All rights reserved.Effect of cooling system on the polymerduring injection moldingHamdy Hassan*, Nicolas Regnier, Cedric Lebot, CyrilLaboratoire TREFLE-Bordeaux1-UMR 8508, Site ENSCPB, 16 Av. Pey Berland, 33607 Pessacarticle infoArticle history:Received 15 November 2007Accepted 19 August 2008Available online 30 August 2008Keywords:PolymerSolidificationInjection moldingabstractCooling system design is ofis crucial not only to reduceity of the final product. Aperformed. A cyclic transientof the mold cooling studycooling system design. Theture distribution of the moldtivity of the process, the coolingshould be necessary for theApplied Thermaljournal homepage: www.elsevirights reserved.Guy DefayeFranceimportance for plastic products industry by injection molding because itcycle time but also it significantly affects the productivity and qual-ical modeling for a T-mold plastic part having four cooling channels isanalysis using a finite volume approach is carried out. The objectivedetermine the temperature profile along the cavity wall to improve theof cooling channels form and the effect their location on the tempera-the solidification degree of polymer are studied. To improve the produc-time should be minimized and at the same time a homogeneous coolingof the product. The results indicate that the cooling system whichand solidificationat ScienceDirectE/locate/apthermengdissipation of the heat through phase change process. This tech-plicit/implicit technique already validated in previous studies byVincent 8, and Le Bot 9 that is based on the technique NewSource” of Voller 10. This method proposes to maintain the nodeswhere phase change occurs to the melting temperature. This solu-tion is repeated until the convergence of the temperature with thesource term equals to the latent heat. The source term is discret-ized by:ScqLfofsotqLffn1sC0fnsDt5The solid fraction which is function of the temperature is line-arized as:NomenclatureCP(J/kg K) specific heat at constant pressurefssolid fractionh (W/m2K) heat transfer coefficientK number of the internal iterationsL latent heat of fusion, J/kgn number of the external iterationsN normal directionScsource termT (K) temperaturet (s) timeH. Hassan et al./Applied Thermal Engineeringnique is applied on fixed nodes and the energy equation in thiscase is represented as follow:qCPoTotr:krTSc2And the source term Scis represented by:ScqLfofsot3where fs(T) = 0.0 at TC31Tf,(full liquid region) 0C30 fsC301, at T = Tf(iso-thermal phase change region) and, fs(T)=1 at TC30Tf(full solidregion).On the whole domain, the following boundary conditions areappliedC0koToN hcT C0Tc2C1; and C0koToN haT C0Ta2C2: 43. Numerical solutionThe numerical solution of the mathematical model governingthe behavior of the physical system is computed by finite volumemethod. The equations are solved by an implicit treatment forqCPoTotr:krT1In order to take into account the solidification, a source term isadded to the energy equation corresponding to heat absorption orheat release 7, which takes in consideration the absorption or thethe different terms of the equations system. When we take in con-sideration the solidification effect, the energy equation is solvedwith a fixed point algorithm for the solid fraction. For each, itera-tion of that fixed point, we use discretization with time hybrid ex-0.20.4 0 .2 0.004 0.03 0.004 P2 P3 P4 P1 P6P7 P5 Exterior air, free convection, haCooling channels, forced convection, hfFig. 1. MoldstructurewithaT-shapeproductandfourcoolingchannels(Dim.Inm).Greek symbolsk (W/m K) thermal conductivityq (kg/m3) densityC1interior surface of the cooling channelsC2exterior surface of the moldSubscriptsa ambient airc cooling fluidf phase change0.01 0.01 0.01 0.01 0.010.02A1 A2 A3 A4A5 A7B1 B2 B3 B4B5B7C1 C2C3C4 C5D1D2 D3 D4D50.04 0.02 0.01 0.015 Polymer Fig. 2. Different cooling channels positions (Dim. In m).29 (2009) 17861791 1787fnk1Ks fnkKsdFsdTC18C19nkKTnk1KC0TnkK6Then, we force the temperature to tend to the melting temper-ature where the source term is not null by updating the sourceterm:Sk1c SkcqCpT C0TfDt7The energy equation is discretized as follow:qCPDtC0qLfDtdFdTC18C19nkK!Tnk1KC0r:krTnk1KqLfDtfnk1KsC0fnsC0qLfDtdFdTC18C19nkKTfqCPDtTn8With:dFdT!C01 if 0 C30 fnkKsC30 1 anddFdT 0iffnkKs 0or1 9This process allows differentiating the temperature field and so-lid fraction calculated at the same instant and the linear system issolved by central discretization method 11. For each internal iter-ation, the resolution of that equation provides fnk1Ksand Tnk1K. Theconvergence is achieved when the criteria of the solid fraction andtemperature are verified by:fnk1KsC0fnkKsC13C13C13C13C13C13C302fand; Tnk1KC0TnkKC13C13C13C13C13C13C302T10Further details on the numerical model and its validation arepresented in 9.the horizontal direction (between positions B2 and B5 or positionsA2 and A5 which have the maximum solidification percent). Whenwe compare the solidification percent for different locations of theupper positions C and D, we find that as the channel approaches tothe product in the horizontal direction the solidification percentincreases, and the cooling rate increase rapidly compared withthe effect of lower position. We notice that, the effect of the coolingchannel position on the temperature distribution and solidificationdecreases as the cooling time augments to higher value and its ef-1788 H. Hassan et al./Applied Thermal Engineering4. Results and discussionA full two-dimensional time-dependent mold cooling analysisin injection molding is carried out for a plate mould model withT-shape plastic mold and four cooling channels as indicated inFig. 1. Due to the symmetry, half of the mold is modeled and ana-lyzed. All the cooling channels have the same size and they havediameter of 10-mm each in case of circular channels. The coolingoperating parameters and the material properties are listed in Ta-bles 1 and 2, respectively, and they are considered constant duringall numerical results 5,7. Each numerical cycle consists of twostages, cooling stage where the cavity is filled with hot polymerinitially at polymer injected temperature, the ejection stage wherethe cavity is filled with air initially at ambient temperature. Figs. 3and 4 show the cyclic transient variations of the mould tempera-ture with time for 16 s mold cooling time at locations;(P1,P2,P3,P4) beside the mould walls and P5 to P7 inside the mouldwalls, respectively (Fig. 1) and that in case of applied the solidifica-tion and without applied solidification. They are simulated for thefirst 30 cycles in case of circular cooling channels position (A5, D3)as shown in Fig. 2. We find that, the simulated results are in goodagreement with the transient characteristic of the cyclic mold tem-perature variations described in 5. It is found that there is aslightly difference in temperatures values between the two results,thus due to the difference in numerical method used and the accu-racy in the numerical calculations. The figures show that, the rela-tively temperature fluctuation is largest near the cavity surface anddiminishes away from the cavity surface. We find that the maxi-mum amplitude of temperature fluctuation during the steady cyclecan reach 10 C176C without applying solidification and 15 C176C in case ofapplying the solidification.4.1. Effect of cooling channels formAn efficient cooling system design providing uniform tempera-ture distribution throughout the entire part during the cooling pro-cess should ensure product quality by preventing differentialshrinkage, internal stresses, and mould release problems. It alsoshould reduce time of cooling and accelerate the solidification pro-cess of the product to augment the productivity of the moldingTable 1Cooling operating parametersCooling operatingparameterCooling operating parameterCoolant fluidtemperature30 C176C Ambient air temperature 30 C176CPolymer injectedtemperature220 C176C Heat transfer coefficient ofambient air77 W/m2KTemperature of fusionof polymer110 C176C Heat transfer coefficient insidecooling channel3650 W/m2KLatent heat 115 kJ/ Mold opening time 4 skgprocess. To demonstrate the influence of the cooling channels formon the temperature distribution throughout the mould and solidi-fication process of the product, we proposed three different crosssectional forms of the cooling channels, circular, square, rectangu-lar1 with long to width ratio of 0.5 and rectangular 2 with width tolong ratio of 0.25. Two cases are studied; first case, all the coolingchannels have the same cross sectional area, and the second case,they have the same perimeter. The comparison is carried out forthe same cooling channels position (A5, D3).Fig. 5 shows the solidification percent (calculated numericallyas the summation of the solid fraction of each element multipliedby the area of that element to total area of the product) for differ-ent forms with different cooling time. The figure indicates that theeffect of cooling channels form on the cooling rate decreases withincreasing the cooling time. It also shows that the cooling channelform rectangle 2 has the maximum solidification percent for case1, and in case 2 the changing of the cooling channels form hasnot a sensible effect on the solidification percent. The same resultscan be obtained when we compared the solidification in the prod-uct and the temperature distribution though the mould for differ-ent forms with the same cross sectional area at the end of thecooling stage for cooling time 24 s for cooling cycle 25, as shownin Figs. 6 and 7, respectively. The results indicate that the coolingprocess is improved as the cooling channels tend to take the formof the product.4.2. Effect of cooling channels positionTo investigate the effect of the cooling channels position, we di-vided the proposed positions into four groups, groups A and B fordifferent positions of the bottom cooling channel, with a fixed po-sition of the top cooling channel, and with vice versa for groups Cand D for the same cooling channel form (circular) as illustrated inFig. 2.Fig. 8 represents the effect of different cooling channel positionson the of solidification percent at the end of 25th cooling cycle forgroups A and B (lower cooling channel effect), C and D (upper cool-ing channel effect) with cooling time. It indicates that for lowercooling channel position effect, the cooling rate increases andhence the solidification percent of the polymer increases as thecooling channel approaches the polymer in the vertical direction(position B has solidification percent greater than position A, andwith the same positions C and D). The figure shows also the mostefficient cooling rate is obtained as the cooling channel takes theposition between 20% and 50% through the product length forTable 2Material propertiesMaterial Density (kg/m3) Specific heat (J/kg K) Conductivity (W/m K)Mould 7670 426 36.5Polymer 938 1800 0.25Air 1.17 1006 0.026329 (2009) 17861791fect on the cooling rate of the product is not the same for differentpositions.Engineering6065abH. Hassan et al./Applied ThermalThe solidification degree distribution through the product at theend of cooling stage at the end of cooling time 24 s and 25th cool-ing cycle for different locations of cooling channel is shown inFig. 9, and the temperature distribution throughout the mouldand the polymer at the same instant for different cooling channelsTemperature, oC Time, s 0 200 400 600303540455055P1P2P3P4Fig. 3. Temperature history of the first 30 cycles at locationsTime,s3035404550556065P5P6P7abTemperature, oC 0 200 400 600Fig. 4. Temperature history of the first 30 cycles at locationsSolidification percent Coolingperiod (constant perimeter )Coolinvgperiod (constant area )+1616182022242628300.680.720.760.80.840.880.920.96CircleRectangle1Rectangle2SquareCircleRectangle1Rectangle2Square+30282624222018Fig. 5. Changing the solidification percent of the polymer part with cooling time fordifferent cooling channel forms.707529 (2009) 17861791 1789position is shown in Fig. 10. When we examine the solidificationdegree of the product and the temperature distribution throughoutthe mold for different positions, we find that as the cooling channelposition moves toward the products, the homogeneity of the tem-perature distribution throughout the polymer and the mold duringTemperature, oC Time, s 03035404550556065P1P2P3P4600500400300200100P1 to P4 (a) without solidification (b) with solidification.Time,s30354045505560657075P5P6P7Temperature, oC 0 200 400 600P5 to P7 (a) without solidification (b) with solidification.Fig. 6. Solidification percent distribution through the product for different coolingchannels forms (a) rectangular 2 and (b) circular having the same cross sectionalarea.38404040424245454545455050505555606056570708080990XY0 0.05 0.1 0.15 0.200.03535373738383840404040424242424254545454550505555606065657070809XY0 0.05 0.1 0.15 0.200.0abFig. 7. Temperature distribution through the mould for different cooling channels forms (a) circular and (b) rectangular 2 having the same cross sectional area.Time, s Solidification percent +200.820.840.860.880.90.920.940.960.981B1,D3B2,D3B3,D3B5,D3B7,D3A1,D3A2,D3A3,D3A5,D3A7,D3+Solidification percent 0.820.840.860.880.90.920.940.960.981B2,C1B2,C2B2,C3B2,C5B2,D1B2,D2B2,D3B2,D53028262422Time, s 20 3028262422abFig. 8. Changing the solidification percent of the polymer part with cooling time for different cooling channel positions (a) lower cooling channel positions A and B and(b) upper cooling channel positions C and D.Fig. 9. Solidification percent distribution through the product for different cooling channels positions for cooling time 24 s and 25th cooling period (a) B7, D3 (b) B2, D3,(c) B2, C5, and (d) B2, C3.1790 H. Hassan et al./Applied Thermal Engineering 29 (2009) 1786179137383838404040424224245454545455050505060607708809090100100110110Y0.0353737383838404040424245454550505055555606065655707075780809Y0.0abpositionsH. Hassan et al./Applied Thermal Engineering 29 (2009) 17861791 1791the solidification process decrease for example positions (B2, D3)and (B2, C3). The figure indicates
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:控制器壳体盖塑料模具设计【22张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-10109142.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!