毕业设计精品]PLC控制中央空调节能改造设计.doc_第1页
毕业设计精品]PLC控制中央空调节能改造设计.doc_第2页
毕业设计精品]PLC控制中央空调节能改造设计.doc_第3页
毕业设计精品]PLC控制中央空调节能改造设计.doc_第4页
毕业设计精品]PLC控制中央空调节能改造设计.doc_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业论文题目PLC控制中央空调节能改造设计专业班级学生姓名指导教师答辩日期目录摘要.1第一章绪论.21.1课题背景.21.2问题的提出.21.2.1原系统简介.21.2.2原系统的运行及存在问题.3第二章中央空调系统节能可行性分析.42.1中央空调原理图及各结构的作用.42.1.1制冷主机:.42.1.2冷冻水泵:.42.1.3冷却水泵:.52.1.4冷却塔:.52.1.5风机盘管:.52.2中央空调现状.52.3节能的可行性分析.6第三章中央空调系统主控制器.73.1PLC的发展.73.2PLC的特点.83.2.1编程方法简单易学,指令丰富.83.2.2功能强,性能价格比高.83.2.3硬件配套齐全,用户使用方便,适应性强.83.2.4无触点面配线,可靠性高,抗干扰能力强.83.2.5系统的设计、安装、调试工作量少.83.2.6维修工作量小,维修方便.83.2.7体积小,功耗低.93.3PLC的应用领域.93.3.1开关量逻辑控制.93.3.2运动控制.93.3.3闭环过程控制.93.3.4数据处理.93.3.5通讯联网.93.4PLC的组成.10第四章基于PLC控制的中央空调系统.124.1PLC控制系统I/O配置表.154.2冷冻水系统控制.164.2.1冷冻水系统逻辑控制:.164.2.2冷冻水系统PID控制:.174.2.3冷冻水系统电量监控:.174.2.4冷冻水系统通讯控制:.174.3冷却水系统控制.194.3.1冷却水系统逻辑控制:.194.3.2冷却水系统PID控制:.194.3.3冷却水系统电量监控:.194.3.4冷却水系统通讯控制:.194.4冷却塔系统控制.204.4.1冷却塔系统逻辑控制:.204.4.2冷却塔系统PID控制:.214.4.3冷却塔系统电量监控:.214.4.4冷却塔系统通讯控制:.21第五章PLC与变频器控制设计.225.1三菱FR-F540-37K-CH变频器主要参数的设定.225.2三菱PLCFX2N-64MR与FR-F540-37K-CH变频器的接线以及I/O分配.225.2.1I/O分配:.225.2.2PLC与变频器接线图:.235.2.3完整梯形图:.275.2.4指令表:.30第六章节能改造前后运行效果比较.376.1节能效果及投资回报.376.2对系统的正面影响.37结论:.38参考文献:.38致谢:.38PLC控制中央空调实现节能第1页共41页摘要中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,达到节能目的提供了可靠的技术条件。关键词:PLC中央空调闭环自动控制系统第2页共41页第一章绪论1.1课题背景中央空调是现代大型建筑物如宾馆、商场、办公楼、居民小区、工厂和其它大型建筑不可缺少的基础设施之一,它能带给人们四季如春,温馨舒适的每一天。中央空调是一种通过集中制冷,然后分别将冷量输送到各空调房间的设备,以调节各个空调房间内温度达到适合人办公或者生活。作为建筑内部重点耗能设备,中央空调系统的耗电一般要占整座建筑电耗的40%以上。而中央空调机组是以满足使用场所的最大冷热量来进行设计的,而在实际应用中绝大多数用户在使用时,冷热负荷是变化的,一般与最大设计供冷热量存在着很大的差异,系统各部分90%以上运行在非满载额定状态。传统的中央空调水、风系统均采用调节阀门或风门开度的方式来调节水量和风量,这种调节方式的缺点不仅是消耗大量能量,而且调节品质难以达到理想状态而导致空调的舒适度不良。中央空调变频节能改造投资价值极高,用户用于该产品的全部投资,可在很短的时间内通过减少能耗支出予以回收。投资收益率根据日运行时间不同,在2540%之间。应用交流变频技术通过对中央空调的末端空调风机箱、冷却塔风机、冷冻水/冷却水水泵、甚至主机驱动电机转速等进行控制调节,从而使空调各子系统风量、水流量等负荷工况参数按负荷情况得到适时调节,不但能改善系统的调节品质,达到阀门、风门节/回流调节、变极调速等落后调节方式所不能相比的调节性能,改善空调的舒适性;更能达到节约大量电能,降低设备运行噪声,延长设备使用寿命、减轻设备维护工作量及费用的理想运行效果。通过变频控制调节,中央空调系统的水、风系统耗电水平可降低30%60%,主机系统可节电10%以上,总体系统节电可达40%左右。用户可在设备投运后几个运行期后,即可从节省的电费支出中收回投资。因此中央空调用户应用变频节能控制系统不仅有着良好的直接经济收益,还能达到节约能源消耗,有利于环境保护的社会效益。1.2问题的提出1.2.1原系统简介中央空调一般包含以下组成部分:制冷系统、冷冻水循环系统、冷却水循环系统以及风机盘管系统,某些高级中央空调系统还有新风机,通过控制室内CO2含量适量引入室外新风,让在室内活动的人感到舒适。中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵和冷却水泵各有3台,型号均为TS-200-150315,扬程32米,配用功率37KW。均采用两用一备的方式运行。冷却塔3台,风扇电机7.5KW,并联运行。第3页共41页1.2.2原系统的运行及存在问题由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。而且冷冻、冷却水泵采用的均是Y起动方式,电机的起动电流均为其额定电流的34倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量和备件费用。另外,由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。因为空调偏冷的问题经常遇到各种想不到的问题造成不少人力资源的浪费。本人提出:“利用变频器、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵进行改造,以节约电能。”第4页共41页第二章中央空调系统节能可行性分析2.1中央空调原理图及各结构的作用图2-1中央空调结构原理图2.1.1制冷主机:制冷主机通过压缩机让制冷剂迅速冷冻循环水的温度快速降低(一般经过制冷主机制冷后的水温在7左右),这是中央空调冷源提供的地方,通过制冷主机冷冻的冷媒水由冷冻水泵送入空调房间。2.1.2冷冻水泵:制冷主机的制冷剂被降到冷却水的温度后,经过节流阀,温度变的更低,这时用水将冷量带走,这部分水称为冷冻水,冷冻水带走制冷剂的冷量后,再到空调系统末端(如风机盘管,空调机组)与空气换热,温度升高后再回到冷水机组内带走制冷剂冷量,这样构成冷冻水循环系统,在这个系统上的泵称为冷冻水泵。第5页共41页2.1.3冷却水泵:制冷剂在冷水机组里循环,经过压缩机是温度升高,这时用水将温度降下来,这部分水称为冷却水,冷却水通过冷冷却水泵把制冷主机所产生的热量带走,再经过冷却塔把热量释放到空气中,然后回到冷水机组,这样构成一个冷却水循环系统,在这个系统上的泵是冷却水泵。要清楚,空调系统通过三个循环把室内的热量传到室外:冷冻水循环,制冷剂循环,冷却水循环。2.1.4冷却塔:冷却塔是利用水和空气的接触,通过蒸发作用来散去制冷主机所产生的废热的一种设备。通过冷却水泵将温度较高的水送上冷却塔,通过冷却塔喷头,让水自上而下流动,一方面,通过自然空气带走水中热量;另一方面,通过冷却风机带动空气加速运动,通过空气带走热量的同时加快蒸发,让水温降低。温度降低后的冷却水再次循环进入制冷主机,带走制冷主机产生的废热,如此循环。2.1.5风机盘管:风机盘管空调系统是将由风机和盘管组成的机组直接放在房间内,工作时盘管内根据需要流动热水或冷水,风机把室内空气吸进机组,经过过滤后再经盘管冷却或加热后送回室内,如此循环以达到调节室内温度和湿度的目的。2.2中央空调现状通常在中央空调系统设计中,建筑物的中央空调系统通常按极端环境条件去计算空调负荷,即以其最大冷(热)负荷的1.11.5倍去确定空调主机及外围设备的额定容量。然而由于气候条件、环境温度、使用时间、空调房间内人数等因素的变化,实际出现最大冷(热)负荷的时间,每年不超过10h20h。空调冷冻、冷却水泵设计扬程和流量比实际需要的扬程和流量高出很多,空调风机的设计供风量也比实际需要的风量大,只要启动中央空调主机,水泵和风机都在工频50HZ下运行,也就是一直在满负荷状态下工作,从而造成整个系统的能源利用效率比较低,导致电能的严重浪费,这也是中央空调节能的可行性之所在。利用节能装置可大大降低水泵电机运行频率,从而降低电机转速,使循环水流量恰到好处地根据空调房间的需要与制冷量实时匹配,从而轻而易举地将部分电能节约下来。特别是对长年运行在日夜变化,季节变化,使用面积的变化而引起制冷量需求变化的系统,节能效果更为明显。中央空调系统的工作过程是一个不断进行能量转换以及热交换的过程。其理想运行状态是:在冷冻水循环系统中,在冷冻泵的作用下冷冻水流经冷冻主机,在蒸发器进行热交换,被吸热降温后(7。C)被送到终端盘管风机或空调风机,经表冷器吸收空调室内空气的热量升温后(12。C),再由冷冻泵送到主机蒸发器形成闭合循环。在冷却水循环系统中,在冷却泵的作用下冷却水流经冷冻机,在第6页共41页冷凝器吸热升温后(37。C)被送到冷却塔,经风扇散热后(32。C)再由冷却泵送到主机,形成循环。在这个过程里,冷冻水、冷却水作为能量传递的载体,在冷冻泵、冷却泵得到动能不停地循环在各自的管道系统里,不断地将室内的热量经冷冻机的作用,由冷却塔排出。如图1-1所示。在中央空调系统设计中,冷冻泵、冷却泵的装机容量是取系统最大负荷再增加10%20%余量作为设计安全系数。据统计,在传统的中央空调系统中,冷冻水、冷却水循环用电约占系统用电的12%24%,而在冷冻主机低负荷运行时,冷却水、冷冻水循环用电就达30%40%。因此,实施对冷冻水和冷却水循环系统的能量自动控制是中央空调系统节能改造及自动控制的重要组成部分。2.3节能的可行性分析风机水泵类负载:P(负载)=Q(流量)H(扬程),当电机转速从N降至N时,流量Q,扬程H及轴功率P的关系如下:Q=Q(N/N)H=H(N/N)2,P=P(N/N)3根据上面公式可以看出,当电机转速下降时,流量按线性关系变化,而电功率按立方关系方式变化,例如,电机功率为15KW,当其转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论