设计哈哈哈带式输送机是以胶带钢带钢纤维塑料作为传送物料和牵引_第1页
设计哈哈哈带式输送机是以胶带钢带钢纤维塑料作为传送物料和牵引_第2页
设计哈哈哈带式输送机是以胶带钢带钢纤维塑料作为传送物料和牵引_第3页
设计哈哈哈带式输送机是以胶带钢带钢纤维塑料作为传送物料和牵引_第4页
设计哈哈哈带式输送机是以胶带钢带钢纤维塑料作为传送物料和牵引_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绪本课题研究的目的和意义井下具有广泛的应用。成为三足鼎立局面,并成为各国争先发展的行业。带式输送机因其具有结构紧目前,带式输送机已经成为露天矿和矿的联合系统中重要的组成部分。本课题研究的内容国内外研究情况及其发展国外带式输送机技术的现状100km,19726.9~11.8km11l000mm,采用ST3150型钢丝绳芯胶带,带速为4.5m/s[18]。输送线。该输送系统由一条长为10.3km的平面转弯带式输送机和一条10.1km 输送带抗拉强度为3000N/mm,安全系数为5,拉紧装置为重锤拉紧。允许行程为25m,驱动采用3台700KW直流电动机,双滚筒驱动。系统采用了先进的托辊制造津巴布韦钢铁公司(ZISCO)15.6km水平转弯越野带式输送机于1996年ZISCONewRippleCreek矿的经过二次破碎的铁矿石运送到Zimbabwe的炼钢厂附近。输送量为干600t/h国内带式输送机技术的现状理论研究和产品开发,研制成功了多种软起动和制动装置以及以PLC为的可编程电控装置,驱动系统采用调速型液力偶合器和行星齿轮器[8]。驱动系统的技术要求输送机控制性能滑和过度运动。影响,严重的破坏性可能会使长距离带式输送机迅速乃至停机。因此,输送机驱动性能最小电应力最小机械应力S型启动长距离带式输送机合理的驱动装置驱动方式的确定电机功率合理分配带式输送机的发展趋势一机多用,扩大功能;带式输送机是一种理想的连续设备,但是17%~25%,且运动部件过多,昂贵,采用无托辊支承或非接触支承是降摩擦损耗的最有效方法是采用非接触带输式送机(垫式胶带机),它所需的电机功率仅为普通胶带输送机的20%。卸、机器安装与都应能实现智能化管理。 上运带式输送机设设计题目原始参数输送机安装倾角物料的散级密度物料在输送带上的堆积角输送带选型计算比较昂贵,约占输送机总成本的25%—50%。在类型确定上需考虑以下几点:2.1倾角供电电来料点最大块度输送带运行速度选择

2.2输送物料的特不会因粉化而由此结合表2.1,我选择v=2.5m/s。带宽的确定

2.3K2.4c1Q/ Q/式中K=422(由表2.2得到=0.90t/m3;B22amax200=800mm式中amax——物料最大块度的横向尺寸。综合考虑,我的带宽选择为1000m。输送带种类的选择问题。因为我设计的输送机距离长1230m,所以我采用钢绳芯输送带。丝绳间距4输送线路初步设计上式布置,布置图2.1。托辊的选择计算托辊类型及其作用的主要部件是托辊,其成本占输送机总成本的25%—30%,总重约占总机重量的30%—40%;它是日常主要管理、和更换的对象。因此,它的可靠性和尘的严重事故。通常托辊的预期使用大2-5万小时,但在恶劣的工作条件下,如煤矿井下工作,它的实际使用低于预期的使用。托辊、缓冲托辊与托辊。托辊的结构与具体布置形式主要决定于输送机的2.1有时采用V形回程托辊。2.335°托辊参数确定查DTⅡ(A)带式输送机设计手册表6-3,35°槽型托辊组主要参数如表35°DTⅡ(A)带式输送机设计手册P646-5,槽型前倾托辊组前倾角为1°26′。托辊间距的确定承载分支托辊间距可参考表2.8选取。缓冲托辊间距一般为承载托辊间距的表2.635°槽型承载托辊组参辊长带速 托辊组 2.7带宽() 托辊组质量表2.835°缓冲托辊参 选取承载托辊间距1.2m托辊阻力系数查《矿井机械》P1282.9松散物料堆积密度0112.10ω´(槽形ω"(平行度带式输送机线路阻力计算基本参数计算d输送带线质量q=23.1kg·m-1(2.2.3dq=

3.6*

2.11F托辊回转部分质量带宽0槽形承载铁冲座压89————V辊铁8()()()(冲座压79————s式 s—滚筒与第一组托辊之间的距离—35°(托辊的成槽角,rad;B—1000(mms2.67Bs2.67B2.11可知承载分支托辊间距Lt=1.2m,其托辊回转部分质量G=17kg(冲压回转部分质量G=15kg(冲压座DTⅡ手册回程托辊选择平行下托辊。因tt承载托辊旋转部分线质量为:q'=17/1.2=14.17kg/m 回程托辊旋转部分线质量为:q"=6.25kg/m tt线路阻力计算WgL(qqqcosq sin ( 其中WgL(qqcos sin ( 式中Wz—承载分支直线运行阻力Wk—回程分支直线运行阻力g—重力加速度,L—输送长度—输送倾—输送带在承载分支运行的阻力系—输送带在回程分支运行的阻力系输送带张力的计算2.2打滑现象发生。传动滚筒与输送带间的摩擦系数可参考表6选取,对于塑面带应减少。擦条件确定:s6s1

n

(u0.25,220,ns1s3c1s4s3wKs5c2s4s6s5wz其中C1其中WkWz为承载托辊阻

S1262713N;S2262713N;S3273221N;S4310916N;S5326462N;S6612996N所 Smax 输送带强度验算根据上面“逐点张力法”计算出的最大张力smax输送带允许承受的最大张力se1000*1000 由于smaxse表 传动滚筒与输送带间的摩擦系驱动装置选择牵引力及电机功率计算而空载电动状态下的功率验算。电动机备用功率一般按15%-20%考虑。W(s6s1)0.04(s6电机功率:PKW*v1.17*215254*2.5 (式 电机选型YB2-4005-4功率为驱动装置及分布滚筒的选择般小于2mm),然后再把人字形沟槽橡胶冷粘或硫化在衬胶上。这种带人字形的许用扭矩52kN·m器比改向滚筒直径选择D1=0.8D=800mmD1—尾部改向滚筒直径,mm;D—传动滚筒直径,mm拉紧力、拉紧行程的计算及拉紧装置的选择拉紧力的计算PH=S4+S5L=KL+(1~2)B+Lj+Lc+LdL—为拉紧行程,m;Lj—拉紧装置接头长度Lc—为拉紧车长度拉紧装置的选择与布置旋拉紧装置(拉紧行程短,拉紧力小,故适用于机长小于80m的短距离带式输TYZL通用型自动拉紧装置是针对我国带式输送机、索道等连续输送拉紧力设定后,TYZL型自动拉紧装置可以保持系统处于恒力拉完成油力补偿,从而达到TYZL型自动拉紧装置的节能运行。TYZL型自动拉紧装置结构紧凑,安装布置方便TYZL型自动拉紧装置可与集控装置连接,实现对该机的控制。 况选用并确定具置。种拉紧装置类型和特点,本设计选择使用YWZ5-315/50的推杆制动装置.制动力矩的计算及制动器的选择制动力矩计算小于该输送机所需制动力矩的1.5倍。MZ0.75gLqsinq2qdqtqtcos Mz—制动装置作用在传动滚筒轴上的总制动力矩,Nm;D—传动滚筒直径L—输送机长度代入得Mz=4208N·M软启动装置的选择机电软启动:可变速电流启动、绕线转子电机驱动,CST部分产品选型手册P5辅助装置清扫装置装载装置带式输送机电控装概况采取了可视化实时,力求系统控制柔性化、显示数字化、操作简单化、结KZW—主要功能;系统组成各控制部件功能3.1公用指令3.1方手XX检自X锁)时,将以最大的度停车。自动控制指令滑泵选择:此转换开关用于确定正常运行(液粘调速器传动比为1∶1)手动控制指令减小调节,以实现加速或控制。低压控制柜高压起动柜检测与保护传感器系统工作原理自动工作方式时,通过自动指令下的起动按钮使输送机自动进入起车运行状态。自动工作方式的起车程序框图如图2所示。图 自动工作方式下起动控制程序框工作框图如图3.3所示。(1)人为按动停止按(2)设备停止运行(有联锁关系时图 自动工作方式下正常停车控制程序框人为按动急停按手动工作方式可操作手动控制方式指令下的相关按钮完成输送机的起动。起动过程如图5所图 自动工作方式下紧急停车控制程序框手动调试方式3.1。在此方式下可以通过操作手动控制方式下的指令按钮和开关来起动、停信号与故障解除与其它理完毕必须按动故障解除按钮才能解除故障,以便重新开车。结济宁三号井带式输送机设计的主要技术参数如下表所参 设 结ST/S带宽线质量 1 1 2YB2-355W-器DCY280- 2BYWZ5-拉紧力拉紧行程参考[1],.机械设计.:中国矿业大学,1988.[2]机械工业部起重机械编.DTⅡ型固定带式输送机设计手京;冶金工业2005.[5]等.软启动在带式输送机中的应用.矿山机械社.2003.[7]主编.机械设计手册.:化学工业[10],.矿山机械.徐州:中国矿业大学[11].DTⅡ(A)型带式输送机设计手册.:冶金工业,2003.:中国标准1999.[17],等.现代设计方法[M].重庆:重庆大学[18]Beltconveyortechnology(partⅢ).transpublications.2000.[19]OtrebskiM.K..AttemptstoImproveStart-upPerformanceofConveyorswithboosterDrives.BulkSolid致完成的,从课题的选题、系统研究、调试到的撰写的每一个环节,都得到了附录外文翻原文HeatTheunderstandingofheattreatmentisembracedbythebroaderstudyofmetallurgy.Metallurgyisthephysics,chemistry,andengineeringrelatedtometalsfromoreextractiontothefinalproduct.Heattreatmentistheoperationofheatingandcoolingametalinitssolidstatetochangeitsphysicalproperties.Accordingtotheprocedureused,steelcanbehardenedtoresistcuttingactionandabrasion,oritcanbesoftenedtopermitmachining.Withtheproperheattreatmentinternalstressesmayberemoved,grainsizereduced,toughnessincreased,orahard surfaceproducedonaductileinterior.Theysisofthesteelmustbeknown becausesmallpercentagesofcertain notablycarbon,greatlyaffectthephysicalproperties.Alloysteelowetheirpropertiestothepresenceofoneormoreelementsotherthancarbon,namelynickel,chromium,manganese,molybdenum,tungsten,silicon,vanadium,andcopper.Becauseoftheirimprovedphysicalpropertiestheyareusedcommerciallyinmanywaysnotpossiblewithcarbonsteels.Thefollowingdiscussionappliesprincipallytotheheattreatmentofordinarycommercialsteelsknownasincarbonsteels.Withthisprocesstherateofcoolingisthecontrollingfactor,rapidcoolingfromabovethecriticalrange inhardstructure,whereasvery slowcoolingproducestheoppositeeffect.Ifwefocusonlyonthematerials normallyknownassteels,asimplifieddiagramisoftenused.Thoseportionsoftheiron-carbondiagramnearthedeltaregionandthose2%carboncontentareoflittleimportancetotheengineerandaredeleted.Asimplifieddiagram,suchastheoneinFig.2.1,focusesontheeutectoidregionandisquiteusefulinunderstandingthepropertiesandprocessingofsteel.Thekeytransitiondescribedinthisdiagramisthe positionofsingle-phaseaustenite(γ)tothetwo-phase ferritepluscarbidestructureas temperaturedrops.Controlofthisreaction,whicharisesduetothedrasticallydifferentcarbonsolubilityofausteniteandferrite,enablesawide rangeofpropertiestobeachievedthroughheattreatment.Tobegintounderstandthese processes,considerasteelofthe composition,0.77%carbon,beingslowcooledalonglinex-x’inFig.2.1. Attheuppertemperatures,onlyausteniteispresent,the0.77%carbonbeingdissolvedinsolidsolutionwiththeiron.Whenthesteelcoolsto727℃(1341℉),severalchangesoccursimultaneously.TheironwantstochangefromtheFCCaustenitestructuretotheBCCferritestructure,buttheferritecanonlycontain0.02%carboninsolidsolution.Therejectedcarbonformsthecarbon-richcementiteintermetallicwith Fe3C.Inessence,thenetreactionatthe 0.77%C→ferrite0.02%C+cementite6.67%C.Sincethischemicalseparationofthe carboncomponentoccursentirelyinthesolidstate,theresultingstructureisafinemechanicalmixtureofferriteandcementite.Specimenspreparedbypolishingandetchinginaweaksolutionofnitricacidandalcoholrevealthelamellarstructureofalternatingtesthatformsonslowcooling.Thisstructureiscomposedoftwodistinctphases,buthasitsownsetofcharacteristicpropertiesandgoesbythenamepearlite,becauseofitsresemblancetomother-of-pearlatlowmagnification.Steelshavinglessthantheeutectoid amountofcarbon(lessthan0.77%)areknownashypo-eutectoidsteels.Considernowthetransformationofsuchamaterialrepresentedbycoolingalongliney-y’in Athightemperatures,thematerialisentirelyaustenite,butuponcoolingentersaregionwherethestablephasesareferriteandaustenite.Tie-lineandlevel-lawcalculationsshowthatlow-carbonferritenucleatesandgrows,leavingtheremainingaustenitericherincarbon.At727℃(1341℉),theausteniteisofeutectoidcomposition(0.77%carbon)andfurthercoolingtransformstheremainingaustenitetopearlite.Theresultingstructureisamixtureofprimaryorpro-eutectoid ferrite(ferritethatformed theeutectoidreaction)andregions ofpearlite.Hypereutectoidsteelsaresteelsthatcontaingreaterthantheeutectoidamountofcarbon.Whensuchsteelcools,asshowninz-z’ofFig.2.1theprocessissimilartothehypo-eutectoidcase,exceptthattheprimaryorpro-eutectoidphaseisnowcementiteinsteadofferrite.Asthecarbon-richphaseforms,theremainingaustenitedecreasesincarboncontent,reachingtheeutectoidcompositionat727℃(1341℉).Asbefore,anyremainingaustenitetransformstopearliteuponslowcoolingthroughthisItshouldberememberedthatthetransitionsthathavebeendescribedbythephasediagramsareforequilibriumconditions,which canbeapproximatedbyslowcooling.Withslow heating,thesetransitionsoccurinthereverse However,whenalloysarecooled rapidly,entirelydifferentresultsmaybeobtained,becausesufficienttimeisnotprovidedforthenormalphasereactionstooccur,in suchcases,thephasediagramisno longerausefultoolforengineeringHardeningistheprocessofheatingapieceofsteeltoatemperaturewithinoraboveitscriticalrangeandthencoolingitrapidly.Ifthecarboncontentofthesteelisknown,thepropertemperaturetowhichthesteelshouldbeheatedmaybeobtainedbyreferencetotheiron-ironcarbidephasediagram.However,ifthecompositionofthesteelisunknown,alittlepreliminaryexperimentationmaybenecessarytodeterminetherange.Agoodproceduretofollowistoheat-quenchanumberofsmallspecimensofsteelatvarioustemperaturesandobservetheresult,eitherbyhardnesstestingorbymicroscopicexamination.Whenthecorrecttemperatureisobtained,therewillbeamarkedchangeinhardnessandotherproperties.Inanyheat-treatingoperationtherateofheatingisimportant.Heatflowsfromtheexteriortotheinteriorofsteelatadefiniterate.Ifthesteelisheatedtoofast,the eshotterthantheinterioranduniformstructurecannotbeobtained.Ifapieceisirregularinshape,aslowrateisallthemoreessentialtoeliminatewarandcracking.Theheavierthesection,thelongermustbetheheatingtimetoachieveuniformresults.Evenafterthecorrecttemperaturehasbeenreached,thepieceshouldbeheldatthattemperatureforasufficientperiodoftimetopermititsthickestsectiontoattainauniformtemperature.Thehardnessobtainedfromagiventreatmentdependsonthequenchingrate,the content,andtheworksize.Inalloysteelsthekindandamountofalloyingelementinfluencesonlythehardenability(theabilityoftheworkpiecetobehardenedtodepths)ofthesteelanddoesnotaffectthehardnessexceptinunhardenedorpartiallyhardenedsteels.Steelwithlowcarboncontentwillnotrespondappreciablytohardeningtreatment.Asthecarboncontentinsteelincreasesuptoaround0.60%,thepossiblehardnessobtainablealsoincreases.Abovethispointthehardnesscanbeincreasedonlyslightly,becausesteelsabovetheeutectoidpointaremadeupentirelyofpearliteandcementiteintheannealedstate.Pearliterespondsbesttoheat-treatingoperations;andsteelcomposedmostlyofpearlitecanbetransformedintoahardsteel.Asthesizeofpartstobehardenedincreases,thesurfacehardnessdecreasessomewhateventhoughallotherconditionshaveremainedthesame.Thereisalimittotherateofheatflowthroughsteel.Nomatterhowcoolthequenchingmediummaybe,iftheheatinsidealargepiececannotescapefasterthanacertaincriticalrate,thereisadefinitelimittotheinsidehardness.However,brineorwaterquenchingiscapableofrapidlybringingthesurfaceofthequenchedparttoitsowntemperatureandmaintainingitatorclosetothistemperature.Underthesecircumstancestherewouldalwaysbesomefinitedepthofsurfacehardeningregardlessofsize.Thisisnottrueinoilquenching,whenthesurfacetemperaturemaybehighduringthecriticalstagesofquenching.Steelthathasbeenhardenedbyrapidquenchingisbrittleandnotsuitableformostuses.Bytemperingordrawing,thehardnessandbrittlenessmaybereducedtothedesiredpointforserviceconditions.Asthesepropertiesarereducedthereisalsoadecreaseintensilestrengthandincreaseintheductilityandtoughnessofthesteel.Theoperationconsistsofreheatingquench-hardenedsteeltosometemperaturebelowthecriticalrangefollowedbyanyrateofcooling.Temperingispossiblebecauseoftheinstabilityofthemartensite,theprincipalconstituentofhardenedsteel.Low-temperaturedraws,from300℉to400℉(150℃~205℃),donotcausemuchdecreaseinhardnessandareusedprincipallytorelieveinternalstrains.Althoughthisprocesssoftenssteel,itdiffersconsiderablyfromannealinginthattheprocesslendsitselftoclosecontrolofthephysicalpropertiesandinmostcasesdoesnotsoftenthesteeltotheextentthatannealingwould.Thefinalstructureobtainedfromtemperingafullyhardenedsteeliscalledtemperedmartensite.Asthetemperingtemperaturesareincreased,thebreakdownofthemartensitetakesceatafasterrate,andatabout600℉(315℃)thechangetoastructurecalledtemperedmartensiteisveryrapid.Thetemperingoperationmaybedescribedasoneofprecipitationandagglomerationorcoalescenceof Asubstantialprecipitationofcementitebeginsat600℉(315℃),whichproducesadecreaseinhardness.Increasingthetemperaturecausescoalescenceofthecarbideswithdecreaseinhardness.Intheprocessoftempering,someconsiderationshouldbegiventotimeasastotemperature.Althoughmostofthesofteningactionoccursinthefirstfewminutesafterthetemperatureisreached,thereissomeadditionalreductioninhardnessifthetemperatureismaintainedforaprolongedtime.Usualpracticeistoheatthesteeltothedesiredtemperatureandholditthereonlylongenoughtohaveituniformlyheated.Twospecialprocessesusinginterruptedquenchingareaformoftempering.Inboth,thehardenedsteelisquenchedinasaltbathheldataselectedlowertemperaturebeforebeingallowedtocool.Theseprocesses,knownasaustemperingandmartempering,resultinproductshavingcertaindesirablephysicalproperties.Theprimarypurposeofannealingistosoftenhardsteelsothatitmaybemachinedorcoldworked.Thisisusually plishedbyheatingthesteeltooslightlyabovethecriticaltemperature,holdingitthereuntilthe temperatureofthepieceisuniformthroughout,andthencoolingataslowlycontrolledratesothatthetemperatureofthesurfaceandthatofthecenterofthepieceareapproxima ythesame.Thisprocessisknownasfullannealingbecauseitwipesoutalltraceofpreviousstructure,refinesthecrystallinestructure,andsoftensthemetal.Annealingalsorelievesinternalstressespreviouslysetupinthemetal.Thetemperaturetowhichagivensteelshouldbeheatedinannealingdependsonitscomposition;forcarbonsteelsitcanbeobtainedreadilyfromthepartialiron-ironcarbideequilibriumdiagram.Whentheannealingtemperaturehasbeenreached,thesteelshouldbeheldthereuntilitisuniformthroughouThisusuallytakesabout45minforeachinch(25mm)ofthicknessofthelargestsection.Forumsoftnessandductilitythecoolingrateshouldbeveryslow,suchasallowingthepartstocooldownwiththefurnace.Thehigherthe content,theslowerthisratemustbe.Theheatingrateshouldbeconsistentwiththesizeanduniformityofsections,sothattheentirepartisbroughtuptotemperatureasuniformlyaspossible.NormalizingandTheprocessofnormalizingconsistsofheatingthesteelabout50℉to100℉(10℃~40℃)abovetheuppercriticalrangeandcoolinginstillairtoroomThisprocessisprincipallyusedwithlow-andmedium-carbonsteelsaswellasalloysteelstomakethegrainstructuremoreuniform,torelieveinternalstresses,ortoachievedesiredresultsinphysicalproperties.Mostcommercialsteelsarenormalizedafterbeingrolledorcast.Spheroidizingistheprocessofproducingastructureinwhichthecementiteisinaspheroidaldistribution.Ifsteelisheatedslowlytoatemperaturejustbelowthecriticalrangeandheldthereforaprolongedperiodoftime,thisstructurewillbeTheglobularstructureobtainedgivesimprovedbilitytothesteel.Thistreatmentisparticularlyusefulforhypereutectoidsteelsthatmustbemachined.Theoldestknownmethodofproducingahardsurfaceonsteeliscasehardeningorcarburizing.Ironattemperaturesclosetoandaboveitscriticaltemperaturehasanaffinityforcarbon.Thecarbonisabsorbedintothemetaltoformasolidsolutionwithironandconvertstheoutersurfaceintohigh-carbonsteel.Thecarbonisgraduallydiffusedtotheinteriorofthepart.Thedepthofthecasedependsonthetimeandtemperatureofthetreatment.Packcarburizingconsistsofcingthepartstobetreatedinaclosedcontainerwithsomecarbonaceousmaterialsuchascharcoalorcoke.Itisalongprocessandusedtoproducefairlythickcasesoffrom0.03to0.16in.(0.76~4.06mm)indepth.Steelforcarburizingisusuallyalow-carbonsteelofabout0.15%carbonthatwouldnotinitselfrespondsappreciablytoheattreatment.Inthecourseoftheprocesstheouterlayerisconvertedintohigh-carbonsteelwithacontentrangingfrom0.9%to1.2%carbon.Asteelwithvaryingcarboncontentand,consequently,differentcriticaltemperaturesrequiresaspecialheattreatment.Becausethereissomegraingrowthinthesteelduringtheprolongedcarburizingtreatment,theworkshouldbeheatedtothecriticaltemperatureof thecoreandthencooled,thusrefiningthecorestructure.Thesteelshouldthenbereheatedtoapointabovethetransformationrangeofthecaseand quenchedtoproduceahard,fineThelowerheat-treatingtemperatureofthecaseresultsfromthefactthathypereutectoidsteelsarenormallyaustenitizedforhardeningjustabovethelowercriticalpoint.Athirdtemperingtreatmentmaybeusedtoreducestrains.Carbonitriding,sometimesknown drycyanidingornicarbing,iscase-hardeningprocessinwhichthesteelisheldatatemperatureabovethecriticalrangeinagaseousatmospherefromwhichitabsorbscarbonandnitrogen.Anycarbon-richgaswithammoniacanbeused.Thewear-resistantcase rangesfrom0.003to0.030inch(0.08~0.76mm)inthickness.Anadvantageofcarbonitridingisthatthehardenabilityofthecaseissignificantlyincreasedwhennitrogenisadded,permittingtheuseoflow-coststeels.Cyaniding,orliquidcarbonitridingasitissometimescalled,isalsoaprocessthatcombinestheabsorptionofcarbonandnitrogentoobtainsurfacehardnessinlow-carbonsteelsthatdonotrespondtoordinaryheattreatment.TheparttobecasehardenedisimmersedinabathoffusedsodiumcyanidesaltsatatemperatureslightlyabovetheAc1range,thedurationofsoakingdependingonthedepthofthecase.ThepartisthenquenchedinwateroroiltoobtainahardCasedepthsof0.005to0.015in.(0.13~0.38mm)maybereadilyobtainedbythisprocess.Cyanidingisusedprincipallyforthetreatmentofsmallparts.Nitridingissomewhatsimilartoordinarycasehardening,butitusesadifferentmaterialandtreatmenttocreatethehardsurfaceconstituents.Inthisprocessthemetalisheatedtoatemperatureofaround950℉(510℃)and

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论