等式与方程课件
2 含未知数的等式——方程 2x+1 当 x = 时。方程 2 x + 1 = 5 成立.2 使方程左右两边相等的未知数的 值叫做方程。4.1等式与方程(2) 如果设蓝色小 球的质量是x克。天 平 与 等 式 等式左边等式左边等式右边等式右边 等号等号 把一个等式看作一个。含有未知数的等式叫做方程。
等式与方程课件Tag内容描述:<p>1、六年级数学(上) 4.1等式与方程(1) 如果设蓝色小球的 质量是x克,则左侧盘 子中物体的总质量 为: 右侧盘子砝码 质量为5g,可得到 等式: 在图中平衡的天平上,蓝色小球的质量是 克? 2x+1=5 方程是表达数量之间相等关系的“天平” 2 含未知数的等式方程 2x+1 当 x = 时,方程 2 x + 1 = 5 成立.2 使方程左右两边相等的未知数的 值叫做方程的解. 求方程的解的过程叫做解方程. 今天主要学习列方程。 小明年龄的2倍等于24,问小 明的年龄是多少? 设小明的年龄是x,那么小明 年龄的两倍为 ? 列出的方程是: 2x 2x=24 小明年龄的2倍再减4等于。</p><p>2、六年级数学(上) 4.1等式与方程(2) 如果设蓝色小 球的质量是x克 ,可得方程: 在图中平衡的天平上,蓝色小球的质量是 克? 2x+1=5 如何求 x 的值呢? 方程的简易变形 2 x = 4 2 x + 1 = 511 议一议 3x=2+2x x=2 方程3x=2+2x是怎么变形的? 天 平 与 等 式 等式左边等式左边等式右边等式右边 等号等号 把一个等式看作一个天平,把等号两边 的式子看作天平两边的砝码,则等号成 立就可看作是天平保持两边平衡. 天 平 的 特 性 天平两边同时加入相同质量的砝码, 天平两边同时拿去相同质量的砝码,天平两边同时拿去相同质量的砝码,天平仍然平衡。</p><p>3、教学目标 1、说出等式的意义,并能举出例子, 会区别等式与代数式;能说出等式的两 条性质,会利用它们将简单的等式变形 ; 2、弄懂方程、方程的解、解方程的含义 ,并会检验一个数是否是某个一元方程 的解; 3、培养观察、分析、概括的能力; 4、初步渗透特殊一般特殊的辩证唯 物主义思想 一、提出问题: 指出下列式子中哪些是等式?哪些是代 数式? a-b+ca-(b-c) a-b+c 3-5=-2 2x-x-l 2x-x-1=0 -2(x-1)=-2x+2 解:、是等式, 、是代数式 说明:等式和代数式既有区别,又有 联系首先等号是关系符号,而代 数式中只有运算符号,所以代数式。</p><p>4、第4课时等式与方程,第五单元总复习,1.数与代数,情境导入,同学们,上节课我们复习了数的运算相关知识,这节课我们来复习与方程有关的知识。,情境导入,(1)你能举出一些用字母表示数和数量关系的例子吗?,速度:v时间:t路程:s,S=vt,例如:,情境导入,(2)什么是方程?方程与等式有什么联系和区别?,含有未知数的等式叫做方程。,方程一定是等式。,等式不一定是方程。,情境导入,。</p><p>5、第四章一元一次方程第一节等式与方程,我能猜出你的年龄,你的年龄乘2减5得数是多少,21,你今年13岁,他是怎么知道的?,小明小彬,如果设小彬的年龄为岁,那么“乘2再减5”就是,所以根据“乘2再减5得21”可得到等式:。,像,这样含有未知数的等式叫做方程。,当x=13时,上面方程的左边=213-5=21,右边=21,因此左边=右边。,使方程的两边相等的未知数的值叫做方程的解。例如,x=13。</p><p>6、第四章一元一次方程第一节等式与方程,学习目标,1、了解等式的两条性质。2、会用等式的性质解简单的一元一次方程。3、渗透“化归”的数学思想方法,重点与难点,1.重点:对等式性质的理解2.难点:等式性质的灵活运用。,知识探究:(一)创设情境,实验一、天平一边放重300克的一本书,另一边放50克的砝码多少个才能是天平保持平衡?实验二、在天平平衡后,两边分别同时放上两个砝码,天平还能保持平衡吗?什么时候。</p><p>7、第四章 一元一次方程 第一节 等式与方程,学习目标,1、了解等式的两条性质。 2、会用等式的性质解简单的一元一次方程。 3、渗透“化归”的数学思想方法,重点与难点,1.重点:对等式性质的理解 2.难点:等式性质的灵活运用。,知识探究:(一)创设情境,实验一、天平一边放重300克的一本书,另一边放50克的砝码多少个才能是天平保持平衡? 实验二、在天平平衡后,两边分别同时放上两个砝码,天平还能保。</p><p>8、七年级上册 2 3等式与方程 情境导入 我们看到过下面的式子 3 5 2 a b c ab ac 3 2x 5 6x 3 y 4 请你观察这四个式子 它们有什么共同点和不同点 下面我们学习等式与方程 本节目标 1 理解等式的概念 2 掌握方程 方程的。</p>