课时作业53
C.y2=8x D.y2=10x。渐近线方程为y=x.。1.已知点P是直线2x-y+3=0上的一个动点。A.2x+y+1=0 B.2x-y-5=0。C.2x-y-1=0 D.2x-y+5=0。代入2x-y+3=0得。课时作业53 随机事件的概率。A.某事件发生的概率是P(A)=1.1。
课时作业53Tag内容描述:<p>1、课时作业53抛物线基础达标一、选择题1若抛物线y22px(p0)上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为()Ay24xBy26xCy28x Dy210x解析:因为抛物线y22px,所以准线为x.因为点P(2,y0)到其准线的距离为4,所以4,所以p4,所以抛物线的标准方程为y28x.答案:C22019广东珠海模拟已知抛物线y24x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PAl,垂足为A,|PF|4,则直线AF的倾斜角等于()A. B.C. D.解析:由抛物线y24x知焦点F的坐标为(1,0),准线l的方程为x1,由抛物线定义可知|PA|PF|4,所以点P的坐标为(3,2),因此点A的坐。</p><p>2、课时作业53曲线与方程基础达标一、选择题1已知点P是直线2xy30上的一个动点,定点M(1,2),Q是线段PM延长线上的一点,且|PM|MQ|,则Q点的轨迹方程是()A2xy10 B2xy50C2xy10 D2xy50解析:由题意知,M为PQ中点,设Q(x,y),则P为(2x,4y),代入2xy30得。</p><p>3、课时作业53随机事件的概率基础达标一、选择题1下列说法正确的是()A某事件发生的概率是P(A)1.1B不可能事件的概率为0,必然事件的概率为1C小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件D某事件发生的概率是随着试验次数的变化而变化的解析:对于A,事件发生的概率范围为0,1,故A错;对于C,小概率事件有可能发生,大概率事。</p><p>4、课时作业53 双曲线 一 选择题 1 双曲线 x2 1的渐近线方程为 A y x B y x C y 2x D y x 解析 由 x2 1 得 渐近线方程为y x 答案 A 2 椭圆 1与双曲线 1有相同的焦点 则实数a的值是 A B 1或 2 C 1或 D 1 解析 由已知得。</p><p>5、课时作业 五十三 文化的交流与传播 1 2017云南省 四川省 贵州省高三百校大联考 超级中国 鸟瞰中国 美丽中国 中国春节 全球最大的盛会 等一系列纪录片在国外电视频道的播出 引发收视热潮 进一步激发了国际社会探求中。</p><p>6、课时作业53 西学东渐 授课提示 对应学生用书第357页 一 选择题 1 2017兰州模拟 上海师范大学教授萧功秦指出 中国人中的世俗理性的最初觉醒 并不是人权与自由的启蒙意识 而是这种为民族生存而激发的以务实地摆脱危机。</p><p>7、课时作业 五十三 传感器的简单应用 基础训练 1 2018广西两市联考 多选 计算机光驱的主要部分是激光头 它可以发射脉冲激光信号 激光扫描光盘时 激光头利用光敏电阻自动计数器将反射回来的脉冲信号传输给信号处理系统。</p><p>8、课时作业 53 1 将一颗骰子均匀掷两次 随机变量为 A 第一次出现的点数 B 第二次出现的点数 C 两次出现点数之和 D 两次出现相同点的种数 答案 C 解析 A B中出现的点数虽然是随机的 但他们取值所反映的结果 都不是本题。</p><p>9、课时作业53双曲线一、选择题1双曲线x21的渐近线方程为()Ayx ByxCy2x Dyx解析:由x21,得,渐近线方程为yx.答案:A2椭圆1与双曲线1有相同的焦点,则实数a的值是()A. B1或2C1或 D1解析:由已知得a1.答案:D3(2016新课标全国卷。</p><p>10、课时作业(五十三) 20世纪以来中国重大思想理论成果 作业时间:月日 11905年5月,孙中山自称是“中国社会主义者”,表示“要采用欧洲的生产方式,使用机器,但要避免其种种弊端”,使中国由中世纪的生产方式直接过渡到社会主义的生产阶段,而工人不必经受被资本家剥削的痛苦。这主要表明当时孙中山() A已成为了社会主义者B彻底认清了中国国情 C萌生了节制资本思想 D完全了解西方的弊端 答案:C解析:孙中山。</p>