uci数据库使用说明_第1页
uci数据库使用说明_第2页
uci数据库使用说明_第3页
uci数据库使用说明_第4页
uci数据库使用说明_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

UCI 机器学习数据库使用说明(转)2011-04-25 14:40UCI 机器学习数据库的网址: /ml/数据库不断更新至2010年,是所有学习人工智能都需要用到的数据库,是看文章、写论文、测试算法的必备工具。数据库种类涉及生活、工程、科学各个领域,记录数也是从少到多,最多达几十万条。UCI 数据可以使用 matlab 的 dlmread 或 textread 读取,不过,需要先将不是数字的类别用数字,比如1/2/3等替换,否则读入不了数值,当字符了。UCI 数据库使用说明转自:/bbs/thread-37-1-1.html此目录包含数据集和相关领域知识(后面以简短的列表形式进行的注释) ,这些数据已经或能用于评价学习 算法 。每个数据文件 (*.data )包含以“属性-值”对形式描述的很多个体样本的记录。对应的*.info文件包含的大量的文档资料 。 (有些文件_generate_ databases;他们不包含*.data 文件。 )作为数据集和领域知识的补充,在 utilities 目录里包含了一些在使用这一数据集时的有用资料。地址 /mlearn/MLRepository.html ,这里的 UCI 数据集可以看作是通过web 的远程拷贝。作为选择,这些数据同样可以通过 ftp 获得,ftp:/ . 可是使用匿名登陆 ftp。可以在pub/machine-learning-databases 目录中找到。注意:UCI 一直都在寻找可加入的新数据,这些数据将被写入 incoming 子目录中。希望您能贡献您的数据,并提供相应的文档。谢谢贡献过程可以参考 DOC-REQUIREMENTS 文件。目前,多数数据使用下面的格式 :一个实例一行,没有空格,属性值之间使用逗号“,”隔开,并且缺少的值使用问号“?”表示。并请在做出您的贡献后提醒一下站点管理员: 下面以 UCI 中 IRIS 为例介绍一下数据集:ucidatairis 中有三个文件:Isindex 为文件夹目录,列出了本文件夹里的所有文件,如 iris 中 index 的内容如下:Index of iris18 Mar 1996 105 Index08 Mar 1993 4551 iris.data30 May 1989 2604 siris.data 为 iris 数据文件,内容如下:5.1,3.5,1.4,0.2,Iris-setosa4.9,3.0,1.4,0.2,Iris-setosa4.7,3.2,1.3,0.2,Iris-setosa7.0,3.2,4.7,1.4,Iris-versicolor6.4,3.2,4.5,1.5,Iris-versicolor6.9,3.1,4.9,1.5,Iris-versicolor6.3,3.3,6.0,2.5,Iris-virginica5.8,2.7,5.1,1.9,Iris-virginica7.1,3.0,5.9,2.1,Iris-virginica如上,属性直接以逗号隔开,中间没有空格(5.1,3.5,1.4,0.2,) ,最后一列为本行属性对应的值,即决策属性 Is 介绍了 irir 数据的一些相关信息,如数据标题、数据来源、以前使用情况、最近信息、实例数目、实例的属性等,如下所示部分:7. Attribute Information:1. sepal length in cm2. sepal width in cm3. petal length in cm4. petal width in cm5. class: - Iris Setosa- Iris Versicolour- Iris Virginica9. Class Distribution: 33.3% for each of 3 classes.本数据的使用实例请参考其他论文,或本站后面的内容。对应的英文有:This is the UCI Repository Of Machine Learning Databases and Domain Theories=This is the UCI Repository Of Machine Learning Databases and Domain Theories4 December 1995: pub/machine-learning-databases/mlearn/MLRepository.html Librarian: Patrick M. Murphy ( )111 databases and domain theories (36MB)=This directory contains data sets and domain theories (the latter have beenannotated as such in the following brief listing) that have been or can beused to evaluate learning algorithms. Each data file (*.data) containsindividual records described in terms of attribute-value pairs. Thecorresponding *.info file contains voluminous documentation. (Some files_generate_ databases; they do not have *.data files.)In addition to data sets and domain theories, the “utilities/“ directorycontains utilities that you may find useful when using datasets in thisrepository.The contents of this repository can be viewed and remotely copied overthe web. The address is /mlearn/MLRepository.html. Alternatively, the contents of this repository can be remotely copied via ftp to . Enter “anonymous“ for user id, and e-mail address (email=userhostuserhost/email) for password. These databases can be found by executing “cd pub/machine-learning-databases“.Notes:1. Were always looking for addition al databases, which can bewritten to the sub-directory named “/incoming“. Please send yours, with documentation. Thanks - See DOC-REQUIREMENTS for suggested documentation procedures. Presently, most databases have the following format: 1 instance per line, no spaces, commas separate attribute values, and missing values are denoted by “?“. Also, please notify the site librarian ( ) after making a donation.2. Ivan Bratko requested that the databases he donated from the LjubljanaOncology Institute (e.g., breast-cancer, lymphography, and primary-tumor)have restricted access. We are allowed to share them with academicinstitutions upon request. These databases (like several others) requireproviding proper citations be made in published articles that use them.Citation requirements are in each databases corresponding *.doc file.To access any of these databases, send email to .To aid you in deciding if you want any of these databases, the documentation files are available.3. An archive server may now be used to recieve via e-mail files in thisrepository. Installed on ics, it provides email access to files inour anonymous ftp/uucp area (ftp). If people have no other access toour archives, then they can send mail to: Commands to the server may be given in the body. Some commands are:helpsend find The help command replies with a useful help message.If you publish material based on databases obtained from this repository,then, in your acknowledgements, please note the assistance you received byusing this repository. Thanks - this will help others to obtain the samedata sets and replicate your experiments. We suggest the following pseudo-APAreference format for referring to this repository (LaTeXd):Murphy,P.M., Stefan Aeberhard)98. trains database (David Aha & Eric Bloedorn)99-104. Undocumented databases: sub-directory undocumented1. Economic sanctions database (domain theory included, Mike Pazzani)2. Cloud cover images (Philippe Collard)3. DNA secondary structure (Qian and Sejnowski, donated by Vince Sigillito) 4. Nettalk data (Sejnowski and Rosenberg, taken from connectionist-bench)5. Sonar data (Gorman and Sejnowski, taken from connectionist-bench)6. Vowel data (Qian, Sejnowski and Turney, taken from connectionist-bench)105. university (Michael Lebowi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论