外文翻译原稿.pdf

X62W型升降台铣床总体结构设计【全套CAD图纸和毕业答辩论文】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10600779    类型:共享资源    大小:2.43MB    格式:ZIP    上传时间:2018-09-01 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
x62w 升降台 铣床 总体 整体 结构设计 全套 cad 图纸 以及 毕业 答辩 论文
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

以下预览截图到的都有源文件,图纸是CAD,文档是WORD,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

摘  要

本题主要是X62W型升降台铣床的总体结构及各部件的设计,主轴箱及进给箱是由异步电动机进行驱动,通过齿轮传动,分别使主轴获得18级转速,进给系统实现21级变速。通过对主轴箱和进给箱中零部件的分析和校核,合理的选择零部件包括齿轮,轴等,满足工作时的加工要求,确保加工时铣削零件尺寸、形状的精度要求。该铣床适用于对平面、斜面、螺旋面及成型表面加工,机床具有足够的刚度和强度,能进行高速度切削和承受一定强度的切削工作。通过对主轴箱和进给箱进行了简要的设计和较核,设计的总体布局满足工艺要求,传动系统满足加工要求。X62W铣床具有主轴转速高、调速范围宽、操作方便、工作台进给速度宽等特点,大大提高了加工范围。

本次设计的是X62W型升降台铣床的总体结构、主轴箱和进给箱的设计,铣床主传动变速箱,主要由滑移齿轮的变速使主轴获得多级转速,以满足不同铣削加工的要求其中,电磁离合器按装在轴上,有制动主轴的作用;铣床进给变速部分中, 不同的电磁离合器分别控制工作进给和快速进给由,运动经过变速箱变速后,工作台在3个进给方向上都得到不同的多个进给速度,在工作进给时,由滚珠式安全离合器实现过载保护,变速操纵采用了孔盘集中变速。孔盘的轴向移动由一套螺旋差动机构实现。


关键词:总体设计;传动系统;主轴箱;进给箱;升降台


Abstract

This thesis is mainly about the design of whole structure and all parts of elevating table miller X62W. Head stock and feeding box are driven by asynchronous motors. By gear’s transmission main shaft gains 18 stages turning speed, and feeding system realizes 21 stages speed-changing. Based on analysis and checks on parts of headstock and feeding box, work elements are properly chosen, including gears and shaft and so on, in order to satisfy processing requirements guarantee and milling machine have high precision on sizes and shapes. This miller is applied to machining of planes, bevel faces, helicoids and forming faces. It has enough rigidness and strength, which makes it mill with high speed and bearing strength to some extense. Through simple checks on headstock and feeding box, general layout satisfies the processing requirement, and transmission system also satisfies the machining requirement. X62W miller has the characteristics of high headstock turning speed, wide speed-change ranges, easy to manipulate, and wide ranges of feeding speed. All of these enlarge the processing scope.


Keywords : Layout Design;Driving System;Headstock;Feed Box;Knee Type


目  录 

摘  要 I

Abstract 错误!未定义书签。

第1章 绪  论 1

1.1 课题背景和研究意义 1

1.2 铣床的概述及国内外发展概况 1

1.3 铣床的分类 1

1.4 研究设想 1

第2章 X62W型升降台铣床总体方案设计 2

2.1 X62W型铣床的结构特点主要参数和主要用途 2

2.1.1 X62W型铣床的结构 2

2.1.3 X62W型铣床的主要参数 3

2.1.4 X62W型铣床的主要用途 3

2.2 主要部分的总体设计 4

2.3 铣床的常用卡具 4

2.3.1 卡具的概念 4

2.3.2 卡具的作用 4

2.3.3 卡具的类型 5

2.3.4 卡具的组成 5

2.3.5 典型工件在铣床上的装夹方式 5

2.4 本章小结 5

第3章 X62W型升降台铣床的传动系统设计 6

3.1 主运动 6

3.1.1 主轴传动结构式 6

3.1.2 主轴转速图 6

3.2 进给运动 8

3.3 本章小结 9

第4章 主轴箱和进给箱的电动机的选择 10

4.1 主轴箱电机的选择 10

4.2 进给箱的电动机选择 11

4.3 本章小结 11

第5章 带传动的设计 12

5.1 概述 12

5.1.1 带传动的分类 12

5.1.2 带传动的失效形式 12

5.1.3 带传动的设计要求 12

5.2 带传动的计算及选定 13

5.2.1 计算带传动的条件 13

5.2.2 计算内容和步骤 13

5.3 带传动的张紧 15

5.3.1 V带的初张力的计算 15

5.3.2 V带常用的张紧方法 15

5.4 本章小结 15

第6章 主轴箱及进给箱的齿轮设计计算 16

6.1 齿轮的概述 16

6.1.1 齿轮的类型 16

6.1.2 齿轮传动的主要特点 16

6.1.3 齿轮传动的要求: 16

6.1.4 失效形式及设计准则 16

6.1.5 齿轮的材料及其选择原则 17

6.2 主轴箱齿轮的设计计算 17

6.3 本章小结 22

第7章 轴的设计计算 23

7.1 轴的概述 23

7.1.1 轴的功用及分类 23

7.1.2 轴的受力分析、失效形式和设计准则 23

7.1.3 轴上零件的固定 23

7.1.4 轴的加工和装配工艺性 24

7.2 轴的设计及计算 24

7.3 主轴的设计 26

7.4 本章小结 30

第8章 零部件的选择 31

8.1 键的选择 31

8.2 离合器选择 31

8.3 润滑系统设计 31

8.4 本章小结 31

结  论 32

致  谢 33

参考文献 错误!未定义书签。



第1章  绪  论

1.1课题背景和研究意义

    铣床的加工是一种应用广泛的机床,在机械加工和机械修理中得到广泛应用。现代机床加工主要表现在自动化程度、技术水平和质量保证。而质量保证就是要保持机械加工的精度,现代大部分高精度的机床的性能还不能满足要求,精度保持性差。铣床的精度的提高不仅会使铣床的加工范围广,而且还会使其用于多种机械加工和机械修理的场所,因而提高铣床加工的精度成为日后的发展趋势。

1.2铣床的概述及国内外发展概况

最早的铣床是美国人惠特尼于1818年创制的卧式铣床;为了铣削麻花钻头的螺旋槽,美国人布朗于1862年创制了第一台万能铣床,这是升降台铣床的雏形;1884年前后又出现了龙门铣床;二十世纪20年代出现了半自动铣床,工作台利用挡块可完成“进给-决速”或“决速-进给”的自动转换。

1950年以后,铣床在控制系统方面发展很快,数字控制的应用大大提高了铣床的自动化程度。尤其是70年代以后,微处理机的数字控制系统和自动换刀系统在铣床上得到应用,扩大了铣床的加工范围,提高了加工精度与效率。 


内容简介:
ORIGINAL ARTICLEFunctional simulator of 3-axis parallel kinematicmilling machineMilos Glavonjic i 1; 2; 3. The position vector of the tool tip is defined in theframe PasPPT; xTPyTPzTPC138T, where zTPC0h. The position vectors of simulators driving axesreference points Riare defined as,BPRi; i 1; 2; 3.Joint coordinates vector: l l1l2l3C138T, l1,l2, and l3are scalar variables poweredand controlled by serial CNC machine within the rangeof lminC20 liC20 lmax, whileBaiare unit vectors,Ba1100C138T;Ba2 010C138TandBa3 00 C0 1C138T.World coordinates vector:BPT xTyTzTC138Trepresents the programmed positionvector of the tool tip, while x BPOP xpypzpC2C3Trepresents the location of the platform, i.e., the origin Opof the coordinate frame P attached to it. The relationshipbetween these two vectors is obvious since coordinateframes BandP are always parallel, i.e.,BPTBPOPPPT1Other vectors and parameters are defined as shown inFig. 6, whereBwiandBqiare unit vectors while c is fixedlength of joint parallelograms.The relationships between the simulators joint coordi-nates vector l l1l2l3C138Tand the serial machine jointcoordinates m x0MyMzMC2C3T, as shown in Fig. 6, are:x0M l3; yM l2; zMC0112On the basis of geometric relations shown in the Fig. 6,the following equations are derived:kBiwiBPOPPBPCiC0BPRi3kBiwi lBiai cBqi4By taking the square of both sides in Eq. 4 the followingrelation is derived:c2 k2i l2iC0 2liBaikBiwiC0C15By adoptingPBPCiC0BPRi 0 6in Eq. 3, kinematic modelling is very simplified. In order tofulfill this requirement, specific calibration method, i. e.,setting of reference points Rihas been developed. ByFig. 6 Geometric model of the simulatorFig. 5 Example of a simulator on the vertical CNC milling machine816 Int J Adv Manuf Technol (2009) 42:813821substituting other mechanisms parameters in Eq. 5, thesystem of the following three equations is obtainedx2p y2p z2p l21C0 2l1xpC0 c2 0x2p y2p z2p l22C0 2l2ypC0 c2 0x2p y2p z2p l23 2l3zpC0 c2 08:7from which are derived: inverse kinematic equations asl1 xpC6c2C0 y2pC0 z2pql2 ypC6c2C0 x2pC0 z2pql3C0zpC6c2C0 x2pC0 y2pq8:8as well as direct kinematic equations asypC0s6C6s26C04s5s7p2s5xp s1 s2ypzp s3 s4yp8:9where ares1l21C0 l222l1; s2l2l1; s3l22C0 l232l3; s4C0l2l3;s5 1 s22 s24; s6 2 s1s2 s3s4C0 l1s2;s7 s21 s23C0 2l1s1C0 c2 l21; lminC20 liC20 lmax; i 1; 2; 3As it was mentioned, by adjustment of simulatorsmechanism parameters, Eq. 6, the solution of inverse anddirect kinematics is greatly simplified. To satisfy theconditions from Eq. 6 six calibration struts of selectedreferent length were used, Fig. 7. With the use of inverseand direct kinematics solutions with the calibrated strutlengths, the positions of reference points Riof sliders Si,(i=1, 2, 3) are defined and fixed by calibration plain rings,Fig. 7.4.1 The analysis of inverse and direct kinematics solutionsWith the analysis of inverse kinematics variance solutions,Eq. 8, different configurations of parallel mechanism for agiven platform position may be noted: the basic configuration, Fig. 2a, when in the Eq. 8, allsigns before the square root are negative, one of alternative configurations, Fig. 2b, when inEq. 8, all signs before square root are positive, other possible mechanism configurations, when in theEq. 8, signs before the square root are combined.In a similar way, through the analysis of direct kinematicsolution, Eq. 9, different configurations of parallel mecha-nism for given positions of driving axes may be established: the basic configuration, Fig. 2a, corresponding to thecase, when in Eq. 9, there is a positive sign beforesquare root, alternative configurations, Figs. 2c and d, when inEq. 9, there is a negative sign before square root.The basic and alternative configurations shown in Fig. 2may be realized in different ways subject to the structure ofthe driving serial machine.4.2 Jacobian matrices and singularity analysisIn view of the significance of PKM singularity, thisproblem has been analyzed in detail for the mechanismvariant shown in Fig. 2a, used for the development of theFig. 7 Setting of simulators reference pointsInt J Adv Manuf Technol (2009) 42:813821 817simulator on horizontal machining center, Fig. 1. Differen-tiating Eq. 8 with respect to the time, Jacobian matrix isobtained asJ 1ypxpC0l1zpxpC0l1xpypC0l21zpypC0l2C0xpzpl3C0ypzpl3C01264375 10As the equations in Eq. 7 are implicit functions of jointand world coordinates, Jacobian matrix may be alsoobtained by their differentiation asJ JC01lC1 Jx11whereJC01l121xpC0l1001ypC0l200 C01zpl3264375 12Jx 2xpC0 l1ypzpxpypC0 l2zpxpypzp l3243513are Jacobian matrices of inverse and direct kinematics.In this way, three different types of singularities can beidentified, e.g., singularities of inverse and direct kinemat-ics as well as combined singularities.With careful analysis of Jacobian matrices determinantsdet Jxpl2l3 ypl1l3C0 zpl1l2C0 l1l2l3xpC0 l1C0C1ypC0 l2C0C1zp l3C0C1 14det JxC08 xpl2l3 ypl1l3C0 zpl1l2C0 l1l2l3C0C115det JlC08 xpC0 l1C0C1ypC0 l2C0C1zp l3C0C116the singularities of inverse and direct kinematics as well ascombined singularity may be noticed.Figure 8 shows these possible simulators singularityconfigurations with corresponding descriptions and equa-tions. As it can be seen from Fig. 8, all singularities are onthe borders of theoretically achievable workspace so that itwould be possible to avoid them easily with adequatedesign solutions and/or mechanical constrains. This meansthat the achievable simulators workspace is smaller thantheoretical workspace. The boundaries of theoretical work-space are on cylinders of radius c whose axes are XB, YB,ZBderived from inverse kinematic Eq. 8 and sphere ofradius c centered in OB, Fig. 8.5 The examples of simulatorsAs it is known in addition to selecting appropriatekinematic topology, the selection of the right geometricdimensions is very important since the performance ishighly influenced by PKM geometric dimensions 1, 8.To select the right dimensions with respect to a givenapplication is a difficult task, and the development ofdesign tools for PKM is still open research 1.The design parameters of simulators shown in Figs. 1, 4,and 5 were adjusted in order to get more adequate shapesand workspace dimensions on the basis of performances ofavailable CNC machines for which simulators wereplanned. The procedure is essentially iterative because indetermination of the basic design parameters the attention ispaid to the possible interferences of structural elements andthe values of det(J) and det(J1) determinants, Eqs. 14, 15,and 16.Fig. 8 Singularity types818 Int J Adv Manuf Technol (2009) 42:813821In the geometric model of simulator variant from Fig. 6,it can be seen that workspace dimensions are primarilyaffected by parallelograms length c, as well as to theadequacy of the distance of the mechanism from D3, D3I2,and D3I1 singularities shown in Fig. 8.For available CNC machine for which the simulator wasplanned, parallelograms length c and values joint ofcoordinates l1,2,3minand l1,2,3maxwere analyzed in iterativeprocedure. In each iteration, attention was paid to thepotential design limitations, interferences, as well as to thevalues of det(J) and det(J1), i.e., to the distances fromsingularities.The parameters determined in this way have beenslightly corrected in detailed design of the simulatorprototype shown in Fig. 9. Shape, volume, and position ofachievable workspace for parallelograms length c=850 mmand l1,2,3min=200 mm and l1,2,3max=550 mm are shown inFig. 2a.On the basis of the adopted concepts and designparameters, the first two simulators have been built (Figs. 9and 10).6 Simulator programming and testingThe simulator programming system has been developed inastandardCADCAM environment on PC platform(Fig. 11). It is possible to exchange geometric workpiecemodels with other systems and simulate the tool path.Linear interpolated tool path is taken from the standard CLfile. The tool path may also be generated in some other wayselected by the simulator user. The basic part of the systemconsists of developed and implemented postprocessor,without the use of postprocessor generator. The postpro-cessor contains inverse and direct kinematics, simulatordesign parameters, and algorithm for simulators tool pathlinearization (Fig. 12). Simulators tool path linearization isessential because CNC machines linear interpolation isused as simulators joint coordinates interpolation. In thisway, simulators tool path remains within the tolerance tubeof predefined radius between points Tj1and Tjtaken fromCL file. The long program for CNC machine obtained inFig. 9 Completed simulator from Fig. 1Fig. 10 Completed simulator from Fig. 4Fig. 11 Simulator programming systemInt J Adv Manuf Technol (2009) 42:813821 819this way is transferred to CNC machine and can beverified during idle running of the simulator. The motionrange of driving axes has been already checked in thepostprocessor.The testing of the simulator in this phase included:& verification of the system for programming and com-munication, and& cutting tests by machining various test pieces (Fig. 13).7 ConclusionIn order to contribute towards the acquisition of practicalexperiences in modelling, design, control, programming,and the use of PKM, a low cost but functional simulator of3-Axis parallel kinematic milling machine is proposed. Thedeveloped functional simulator of the 3D parallel kine-matic milling machine integrates, as a hybrid system, theexisting technological equipment (CNC machine tools,CADCAM hardware and software) and parallel kinemat-ic mechanism into a comprehensive and sophisticateddidactic facility. The idea about the functional simulatorwas verified by successful making of some standardizedtest pieces out of soft materials, made under fulloperational conditions. Its capabilities and characteristicshave shown that the simulator itself was an interesting andvaluable R&D topic. This idea may be further used formaking of ones own simulators.Fig. 13 Test pieces made of foamFig. 12 Uniform linearization of simulators tool path820 Int J Adv Manuf Technol (2009) 42:813821Acknowledgements The presented work was part of Eureka projectE!3239 supported by the Ministry of Science of Serbia.References1. Weck M, Staimer D (2002) Parallel kinematic machine toolscurrent state and future potentials. CIRP AnnalsManufacturingTechnology 51(2):671683 doi:10.1016/S0007-8506(07)61706-52. Covic N (2000) The development of the conceptual design ofclass of flexible manufacturing systems. University of Belgrade,Belgrade Faculty of Mechanical Engineering, Dissertation, inSerbian3. Chablat D, Wenger P (2003) Architecture optimization of a 3-doftranslati
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:X62W型升降台铣床总体结构设计【全套CAD图纸和毕业答辩论文】
链接地址:https://www.renrendoc.com/p-10600779.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!