基于SolidWorks四足步行机器人腿机构设计【毕业论文+CAD图纸通过答辩】
收藏
资源目录
压缩包内文档预览:(预览前20页/共42页)
编号:1109848
类型:共享资源
大小:3.92MB
格式:RAR
上传时间:2017-03-29
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
基于
solidworks
步行
机器人
机构
设计
毕业论文
cad
图纸
通过
答辩
- 资源描述:
-





- 内容简介:
-
基于 足步行机器人腿机构设计 学生姓名: 指导教师: 所在学院: 专 业: 中国大庆 2009 年 5 月黑龙江八一农垦大学毕业论文(设计) I 摘 要 本文介绍了国内外 四 足步行机器人的发展状况和三维制图软件应用,着重分析了设计思想并对行走方式进行了设计并在此软件基础上四足步行机器人腿进行了绘制,对已绘制的零部件进行了装配和三维展示。展示了 大的三维制图和分析功能。同时结合模仿四足动物形态展示出了本次设计。对设计的四足行走机器人腿进行了 详细的分析与总结得出了该机构的优缺点。本文对四足机器人腿的单腿结构分析比较详细,并结合三维进行理性的理解。 关键词 : 四足步行机器人腿 黑龙江八一农垦大学毕业论文(设计) n of of on an of to of of on to a At to of to a at a of of In a of 龙江八一农垦大学毕业论文(设计) 录 摘 要 . I . 言 . 绪论 . 1 行机器人的概述 . 1 行机器人研发现状 . 1 在的问题 . 6 2 四足机器人腿的研究 . 7 的对比分析 . 7 环关节连杆机构 . 7 环平面四杆机构 . 9 的选择与设计 . 11 的配置形式 . 11 的步态选择与分析 . 12 的设计 . 14 的机构分析 . 15 撑与摆动组 合协调控制器 . 20 条腿尺寸优化 . 23 学建模 . 23 动特征的分析 . 25 器人腿足端的轨迹和运动分析 . 26 器人腿足端的轨迹分析 . 26 器人腿足端的运动分析 . 28 3. 机体设计 . 30 体设计 . 30 体外壳设计 . 30 动系统设计 . 30 用 行腿及整个机构辅助设计 . 34 . 35 文完成的主要工作 . 35 论 . 35 参考文献 . 36 致 谢 . 37 黑龙江八一农垦大学毕业论文(设计) 言 机器人的研发和使用现已经成为世界各国的重要科研项目,用它来代替人的操作项目或帮助残疾人完成自己不能完成的项目活动。在工业,手工业,重工业等方面机器人的辅助功能尤为突出,大大提高了工作效率,节省开支。其中,以行走机构较为常见,比如哈尔滨工业大学自主研发的四足机器人来踢足球,几个机器人在小场地上模拟人的足球比赛规则来进行比赛,看来显得妙趣横生。 对其在世界发展角度来讲,中国的机器人发展水平还处于中游水平,但尤为强调的是哈尔滨工业大学,中国中航二集团自 主研发的二足,四足及多足机器人都在中国的机器人发展过程中起到极大的积极作用,在工业,航天业更涉及到大众娱乐,发展前景都非常好。 本设计既对四足步行机器人腿进行机构分析设计,我也对此机构的机体在参仿之外做了一系列改进,以及绘制三维图等方面工作。黑龙江八一农垦大学毕业论文(设计) 绪论 行机器人的概述 机器人的研发和使用现已经成为世界各国的重要科研项目,用它来代替人的操作项目或帮助残疾人完成自己不能完成的项目活动。在工业,手工业,重工业等方面机器人的辅助功能尤为突出,大大提高了工作效率,节省开支。其中,以行走机构较为常见,比如哈 尔滨工业大学自主研发的四足机器人来踢足球,几个机器人在小场地上模拟人的足球比赛规则来进行比赛,看来显得妙趣横生。 步行机器人是一门集仿生学、机械学及控制工程学等多学科融合交汇的综合性的学科,不仅涉及到线性、非线性、基于多种传感器信息控制以及实时控制技术,而 且还囊括了复杂机电系统的建模、数字仿真技术及混合系统的控制研究等方面的要求。 步行是入与大多数动物所具有的移动方式,是种高度自动化的运动。对于环境具有很强的适应性,相对于轮式、履带式及蠕动式移动方式而言,具有更广阔的应用前景。我们从事步行机器人的研究工作 ,并不是为了追求对复杂系统的研究,而是因为步行机器人的确具有广泛的应用前景,例如在取代危险环境下人类的工作、工厂的维护和不平整地面的货物搬运以及灾害救助等方面。另外,随着社会老龄化程度的不断加深,在护理老人、康复医学以及在一般家庭的家政服务等方面步行机器人也将得到应用 。 行机器人 研 发 现状 上世纪 70 年代,由于生物学、控制理论和电子技术的发展,人们开始对类人行走进行系统的研究,和村洋、高滨逸郎等人从生理学角度来分析人类的行走,期望对临床应用、假肢设计提供资料。 人从模拟人的双足 步行机械出发,对步行机器人的数学模型、控制算法和步行稳定性、能量分析等问题进行了研究,特别是他所提出的零力矩点 (念已经被广泛地应用在腿式机器人的 控制中。 真正从工程角度对步行机器人进行研究并首次获得成功的是早稻田大学的 I 授等人,他们于 1972 年推出了 5 双足步行机器入可以实现步幅为 20步约 45 秒的静态行走。实验室的成功推动了步行控制技术的飞速发展。近三十年来,步行机器人技术得到飞速的发展。从最初的静态行走只能在平面上行 走发展到拟动态行走、动态行走、斜坡上的行走甚至实现跑步 。 动态 行走是步行机器人提高行走速度和研究的必然发展方向 。 黑龙江八一农垦大学毕业论文(设计) 图 1示为 通用电气公司的 美国陆军的 计开发的四足步行车“ 。 具有 230 千克 运输能力、乘坐一名驾驶员、高度 、质量 1360 千克 的步行机械系统。 该步行车的四个指令杆跟随驾驶员 的手 和脚动作的液压 驱动 随动系统,并安装在驾驶员手臂和脚上的位置传感器检测他的动作,液压伺服马达驱动四只 脚做 相同的动作,该机装有力反馈机构, 驾驶员坐在驾驶室里就能够凭感觉知道作用在机械脚上的力是多少。 虽然 操作费力,但实现了爬越障碍,因而被视为现代行走机构 发展史上的一个里程碑。 图 1足 步行车 如图 1示为世界上第一台四足步行 机构 机器人 7,它被制造于 1976 年,其特点是:能够实现在不平地面上稳定步行运动,能够越过地面上较小的障碍物而不接触;能够实现全方位的步行运动而不会出现打滑或者损坏地面的结构;该步行机器人能够成为一个稳定的工作平台,利用腿的自由度执行操作任务。 图 1一台采用四足步行机构的机器人 龙江八一农垦大学毕业论文(设计) 20 世纪 80 年代以来, 采用 行走机构 的 机器人 技术得到了快速的发展, 国外的发展领先于国内,国外己研制出一定数量的四足机器人样机 少量投入了使用,以下从几个典型的四足 行走机构 机器人来阐述国外四足 行走机构 机器人的研究现状。 2004 年美国军方发布的“小狗”机器人开展运动学习的研究,科学家应用“小狗”来探索机器学习 、运动控制、环境感知和不确定地形运动之间的基本关系。 2009 年 5 月美军又研制出了利用在军事上的“大狗”,如图 1示,这个四足机器人由波士顿动力学工程公司( 门为美国军队研究设计。 这种机器狗人能够在 战场 上发挥非常重要的作用:在交通不便的地区为士兵运送弹药、食物和其他物品。它不但能够行走和奔跑,而且还可跨越一定高度的障碍物。该机器人的动力来自一部带有液压系统的汽油 发动机。 图 1四足机器人 狗 加拿大的 学机器人研究室( 制了 足步行机器人(见图 1结构简单,每条腿只有一个主动转动关节,然而值得注意的是,在每只腿的臀部都装有一个激励源,使得机器人站立时臀部也能有连续的速度。受人和动物步行时使用很少能量摆动小腿的启示,设计者将膝关节设计为被动自由度,依靠上下腿动态耦合实现角度控制。另外,他们设计了一种新型的动态步行步态 没有滑翔阶段的动步跳,成功实现了 足步行机器人在不依靠反馈补偿的控制条件下稳定动步行。加拿大 学的步行机器人实验室 (制的 列步行机器人 ,如图 1示。该机器人的一个最黑龙江八一农垦大学毕业论文(设计) 的特点就是其步行机构相当简单,每条腿只有一个自由度,能够实现步行、转弯以及跨越 90台阶,但可靠性较差,后来对 器人做了一些改进,将步行机构的关节改为被动关节,大大提高了其步行可靠性。 图 1列四足步行机器人 除了世界各地的研究机构和高效实验室研制的用于科学实验的四足机器人之外,人们还出于商业目的,开发了多种四足步行机器人。最为典型的是司推出的四足步行机器人,如图 1示,该 机器人每条腿,采用平面四杆缩放机构,具有二个自由度,机器人能前向、后腿,左转和右转,并预留有 55%的记忆体可供客户做进一步的机器人实验和开发利用。 图 1四足步行机器人 国内具有代表性的 采用 四足 机构的 机器人主要包括 : 如图 1示为上海交通大学所研制的二种四足步行机器人,( a)所示的四足步行机器人为采用平面四杆机构作为其步行机构,可以实现跨越障碍,沟槽,上下台阶及通过高低不平的地面有一定识别及步态调整能力;( b)所示黑龙江八一农垦大学毕业论文(设计) 四足步行机器人 是由上海交通大学研制的关节式哺 乳动物型步行机器人。机器人的长、宽、高分别为 81 厘米 、 75 厘米 、 30 厘米 ,重 为开式链关节型结构,膝关节为一纵摇自由度,髋 关节为纵摇和横摇两个自由度,各自由度由直流电机经谐波齿轮驱动,用电位器、测速电机作为位置和速度传感器,脚底为直径 12 厘米 的圆盘,是一个被动的纵摇自由度。该机器人为足式机器人的经典结构,但速度缓慢,步行速度 米 /时 。 (a) (b) 图 1海交通大学的二种四足步行机器人 清华大学机器人实 验室研制的 方位四足步行机器人,如图 1-7(a)所示,它采用平面四杆缩放机构作为其步行机构,在足端被安装压力传感器,能够实现全方位步行;图 1-7(b)所示为清华大学所研制的另一种四足步行机器人,它采用开环关节连杆机构作为其步行机构,通过模拟动物的运动机理,实现比较稳定的节律运动,可以自主应付复杂的地形条件,完成上下坡、越障等功能。 (a) (b) 图 1华大学的二种四足步行机器人 综上所述,随着控制理论、计算机技术以及多传 感器信息融合技术的发展,黑龙江八一农垦大学毕业论文(设计) 界机器人发达国家的学者在步行机器人技术的理论和实验上作了大量的研究,这种现象的出现最可能的解释是步行机器人具有更强的机动性和灵活性,具有更广阔的应用前景 。 在的问题 在处理多自由度的步行机器人运动控制中,的确很难将这些方法应用与机器人的运动控制中。基于行为的控制策略 在处理多自由度步行机器人这类复杂系统时,行为规则的设计十分困难。 因为 多关节步行机器人运动学远比轮式移动机器人复杂,建立多关节步行机器 人的传感空间到关节运动空间的映射非常困难。 基于高层规划的控制方式虽己应用于多 足步行机器人的步行控制。但随着步行机器人自由度数的增加,系统模型的建立成为控制系统设计中最为繁琐、耗时和困难的环节,而且模型的可靠性并不理想。因此,将神经网络用于机器人步行控制,解决系统中存在的多变量、非线性、变结构问题,是步行控制的合理选择,且在机器人虚拟平台上取得了较好的结果。但在物理实验平台的 实际应用研究中,结果并不理想。 以上的分析可以看出,在多关节步行机器人的运动控制中,传统的运动控制策略或多或少地存在不足之处。其原因是研制能在现实世界象动物那样运动的机器,必须集多学科研究成果之大成,其模型的建立 和计算必然极其复杂。为此本文提出虚拟构件的概念来建立四足步行机器人的虚拟模型,借鉴人在解决某些问题时经常采用的直觉方法来控制四足步行机器人的运动,试图从另外一个角度来解决步行机器人的运动控制问题。 黑龙江八一农垦大学毕业论文(设计) 四足机器人腿 的研究 的 对比分析 四足行走机构 的机械部分是机器人所有控制及运动的载体,其结构特点直接决定了机器人的运动学特征。其中,腿部结构形式是 行走机构 中重要组 成部分,也是机械设计的关键之一。因此从某种意义上说,行走 机构的分析主要集中在步行机构的分析上。一般地, 四足行走机构的 设计要 求看,步行不能过于复杂,杆件过多的步行机构形式会引起结构和传动的实现困难,对腿部机构的基本要求是:输出一定的轨迹,实现给定的运动要求;具有一定的承载能力;方便控制的要求。目前,国内外学者对步行机器人的步行机构已经作了大量的研究工作,其结构形式多样,主要可以归纳为三类:开环连杆机构;闭环平面四杆缩放式机构;特殊的步行机构。 环关节连杆机构 在早期的步行机器人研究中,一般是模仿动物的腿部结构来设计步行机构。所有这种机构形式一般都是关节式连杆机构。其优点在于结构紧凑,步行机构能够达到的运动空间较大,且 运动灵活,由于关节式步行机构是通过关节链接的,因而在步行过程中的失稳状态下具有较强的姿态恢复能力。不足之处是在腿的主动平面内大小腿的运动之间存在耦合,使得运动时的协调控制比较复杂,而且承载能力较小。 如图 2示为常见的开环关节连杆步行机构的三维模型图形。该机构可分为大、小腿以及髋关节组成。由大小腿组成平面运动机构,髋关节驱动该平面机构从而实现空间运动。可建立如图 2示的坐标系,第一关节为髋关节,在 1O 点围绕 Z 轴旋转,髋关节的旋转半径设为 1L ;第二个驱动关节为大腿关节 ,在 A 点围绕着与大小腿运动平面所垂直的轴旋转,大腿杆长为 2L ;第三个驱动关节为小腿关节,在 B 点围绕与大小腿运动平面垂直的轴转动,小腿杆长度为3L。同时规定逆时针为正向角。 图 2环连杆步行机构 黑龙江八一农垦大学毕业论文(设计) 2环连杆机构坐标系模型 如图 2示,当机构运动到某一位置时,设髋关节驱动转动角为 ,大腿关节驱动转角为 ,小腿杆驱动转角为 ,由上图可以建立足端 C 点的运动轨迹方程: )c o s (c o s 321 )s s 2 90 由上式以及图形可知,小腿杆可以在转过大臂上部空间运动(类似于人的小臂运动),所 以在运动过程中,由于臂的末端 C 点可达区域比较大,当髋关节转动时,机构的运动空间将实现三维椭圆状。但是采用此机构用作步行机构,在机器人行驶时,足端的运动范围并不是覆盖了整个可达运动空间,不可能在转过大腿杆时仍能够到达所有区域。综上所述的原因,小腿与地面法线的夹角要在一定的范围之内。如图 2示,就将存在小腿的最大转动角度 和小腿最大内向(顺时针)驱动角度 ,此时小腿的摆动约束可表示为:m n ,又有 角的求解公式为: 黑龙江八一农垦大学毕业论文(设计) 3 )90s s 令小腿杆在二极限位置 对应的 值为 1 、 2 ,所以可求得: )90c o s (c o s)90c o s (c o sm a i nm a a 由上式可知,对于不 同的高度值,足端的运动空间在 面中产生类似椭圆曲线的轨迹,当髋关节转动时,将形成三维的运动空间,如图 2示。 图 2腿的摆动约束 图 2端运动空间 环平面四杆机构 此种形式的机构能够克服开链式结构承载能力低的缺点,具有较好的刚性,并且功耗较小,有着较广泛的应用。如图 2示为一种常见的闭环平面四杆步行机构,其中 Z 轴驱动器用于承担机体的重量或升降机体,而 X 和 化了协调控制。缩放式腿部结构具有比例特性,黑龙江八一农垦大学毕业论文(设计) 将驱动器的推动距离按比例放大为足端运动 距离,其缺点是:无论是圆柱坐标还是直角坐标的缩放机构,都至少需要二个线性驱动关节,使得机械结构较大,质量较重,而且机器人足端的运动范围受驱动距离的限制,难以得到大的运动空间。 图 2面四杆步行机构 图 2面四杆步行机构坐标系模型 我们建立如图 2示的坐标系模型。 B 点髋关节,绕 Z 轴转动,转角为,悬长为 1L ; 2O 点为大腿杆 2旋转点,杆长为3L,其与 1延长线的夹角为; 1O 点为大腿杆 21旋转点,杆长为 2L ,其与 1延长线的夹角为;由此可推出 A 点的运动轨迹方程为: c o sc o s 321 黑龙江八一农垦大学毕业论文(设计) s 2 从所周知,当四杆机构的二杆重合时,机构将会出现死点,为了防止四杆机构存在死点位置,通常的做法是规定一个小腿杆与大腿杆的最小夹角 最大夹角即在大小腿杆之间的夹角在任何情况下均要满足以下约束条件:m a xm 。正是由于这种限制,大小腿的运动受到很大的限制,组成了平面运动机构。 另外,平面四杆机构有多种演化方式,较典型的有:埃万斯四连杆 机构,如图 2示为机构的简化形式,用连杆曲线的轨迹作为足端轨迹。该步行机构,设计简单、方便。具有运动解耦特性,而且都能产生近似直线的运动。但由于四杆机构本身存在死点问题,容易产生死锁现象,限制了腿部机构的工作空间。同时增加了控制难度。 图 2万斯四连杆机构 的 选择与设计 四足行走机构机械设计主要包括腿机构设计、腿的配置形势确定、步态分析。腿机构是行走机构的一个重要组成部分,是行走机构机械设计的关键。 的配置形式 四足机构腿的配置有两种,一种是正向对称分布,既腿的主平面与行走方 向垂直,令一种为前后向对称分布,既腿平面与行走方向一致,如图 2设计机构将选择正向对称分布。 黑龙江八一农垦大学毕业论文(设计) 2的配置形式 的步态 选择与 分析 步态是行走机构的迈步方式,既行走机构抬腿 和 放腿的方式,由于开发步行行走机构的需要, 60 年代末, 总结前人对动物步态研究成果的基础上,比较系统的给出了一系列描述和分析步态的严格数学定义。之后,各国学者在四足,六足,八足等多足步行机构的静态稳定的规则周期步态的研究中取得多项成果, 但这些步态的研究基本上局限于平坦地面,并且假设对于不平地面也是合 理的。对于严重不平地面(地面上可能有不可立足点存在)的行走步态研究,是从 70 年代中期开始的,其中包括对非周期步态研究,对自由的分析等等。 一、步态的类型 凡是四足动物在正常行走时 ,四条腿的协调动作顺序一般按对角线原则,既如左前腿右后腿 左后腿 右前腿左前腿如此循环下去。在每一时刻,至少右三条腿着地,支撑着身体,既最多只有一条腿抬起,脚掌离地。因此,对于每条腿的运动来说,脚掌离地时间与着地时间之比为 1: 3。 四足动物除了上述步态之外,还有其他各种步态 对角小跑,也叫 态,既马或其他四足 动物介于快走和快跑之间的一 步态, 前进时是对角线的双腿共同向前移动。 单侧小跑,也叫 态,既同侧的两足为支撑足,其余两足为非支撑足的步态。 正常行走 这三种步态的左右腿相位相差 对称步态,其余是非对称步态。如图 g 也叫 态 ,动物在快跑时两条前腿或后腿同时跳起的步态。四足步行机构常用的步态还有:爬行步态,四足匍匐步态,四足倾斜步态,四足旋转步态和四足姿态变化步态,等等。 二、步态的选择 黑龙江八一农垦大学毕业论文(设计) 于本设计对腿的要求及整个机体的选择和一个电机的选择配合蜗杆的使用等原因,所以选择 态步行中的 态,既处于对角线上的两条腿动作完全一样,均处于摆动相或均处于支撑相,简称对角小跑步态。 三、步态的设计 步态设计是实现动态步行的关键之一,为达到较理想的动态步行,考虑下列要求: 步行平稳、协调、进退自如,无左右摆晃及前后冲击机体和关节间没有较大的冲击,特别是在摆动腿着地时,与地面接触为软着陆。 机体保持与地面平行,且始终以等高运动,没有明显的上下波动。 摆动腿跨步迅速,腿部运动轨迹 圆 滑,关节速度和加速度轨迹无 畸点。 占空系数 (一)、腿部 动作和占空系数 态的特点是处于对角线上的两条腿 1、 3 或者 有相同相位,既对角线上两腿的动作完全一样,同时抬起,同时放下。图 2一个步行周期 T 中四足机器人的摆动相与支撑相的交替过程。根据占空系数 K 的大小可分为 3 种情况: K=两摆动腿着地的同时,另外两支撑腿立即抬起。此情况为特例。既任意时刻同时有支撑相和摆动相(见图 2a)。 器人移动较慢时,摆动相与支撑相有一短暂的重叠过程,即机器人有四腿同时着地状态 (见图 2b)。 器人移动较快时,四条腿有 同时为摆动相时刻,四条腿同在空中,尤如马奔跑时腾空状态 (见图 2c)。显然此交替过程要求机器人机构具有弹性和消振功能,否则难以实现,尚有待引入弹性机构。 本文研究 k的 态。 (a) (b) (c) 图 2空系数示意图 (二)、腿摆动、跨步与机体重心移动顺序 起始时对角线上两摆动腿 1 ,3 抬起向前摆动,另两条腿 2 ,4 支撑机黑龙江八一农垦大学毕业论文(设计) 确保行走机构原有重心位置在其支撑腿的对角 线上 (见图 2a),摆动腿 1 ,3 向前跨步造成重心前移 (见图 2b),此时机器人有摔倒趋势。支撑腿 2 ,4 一面支撑机体,一面驱动相应的髋关节和膝关节,使机体向前平移/ 2 步长。此时机体重心已偏离对角线 2 ,4 中点,将至摆动腿 1 ,3 的中点 (见图 2c)。 图 2摆动、支撑与机体重心 在机体移动到位时,摆动腿 1 和 3 立即放下,呈支撑态。恰好使重心在支撑腿 1 和 3 的对角线稳定区内,原支撑腿 2 和 4 也 已抬起并向前跨步 (见图 2d),此时重心已接近腿 1 和 3 对角线中点,且随着腿 2 和 4 的向前跨步而继续向前移动。摆动腿 2 和 4 相对机体向前跨步的同时,另两腿 1 和 3 一面支撑机体,一面驱动其相应的髋、膝关节使机体前移 / 2 ( 见图 2e)。同时摆动腿向前跨步和随同机体相对支撑腿前移 / 2 ,重心也移到摆动腿 2 和 4 的中点,机体处于跌倒态,在此瞬间摆动腿 2 和 4 与支撑腿 1 和 3 交替,使机体重新处于稳定状态 (见图 2f),从而完成整个步行周期动作。为了避免 机体平移时摆动腿与地面之间产生叩碰,必须保证只有在摆动腿脚底离开地面时机体才能移动 (机体前移动作通过驱动支撑腿的髋、膝关节使机器人支撑腿足底水平后移,由于地面的支撑作用 ,足底和地面位置相对不变而使机体水平前移 )。 的设计 从运动角度出发,足端相对与机身应走直线轨迹,为了在不平地面行走,腿的伸长应该是可变的。从整体的行走性能出发,一方面要求机体能走出直线运动轨迹或平面曲线轨迹(在严重崎岖不平地面),另一方面要求转向。步行行走机构腿部的主要任务:一是支撑着主要由躯体所组成的本体,二是使本体向步行方 向移动,此外还必须具有脚部抬起,并向步行方向摆动的动作,若把黑龙江八一农垦大学毕业论文(设计) 体看作固定不动,则足端轨迹如图 2a)所示。 图 2足端轨迹图 实际的足端轨迹图如图( b)所示,在支撑相描述出比较缓慢的直线段,而在摆动相描绘出快速的凸起曲线段。 根据上述,提出四足行走机构中腿机构的要求: 1. 腿的足端部相对于机体的运动轨迹形状应如 “ ” 。直线段对应的就是足支撑机体的运动轨迹(支撑相),曲线段对应的是脚 掌离开地面的足端运动轨迹 (悬空项)。 2. 为了不至于使行走机构在运动过程中,因机体上下颠簸而消耗不必要的能量,应保证要求中的直线段有一定的直线度。 3. 对于要求 1 中曲线段,没有形状要求,但对其最高点有要求,即其高度决定了机器人在起伏不平的地面上的通过能力。 4. 在要求 1 中,足端通过直线段的时间与通过曲线段的时间相等,即支撑相的相位角为 /2 ,悬空相的相位角为 /2 。 5. 按要求 1计的行走机构的四条腿的协调动作顺序要严格要求。 的机构分析 步行机器人的腿机构是步行机器人的重要组成部分,在设计腿机构时,要求腿机构能够实现运动和承载的功 能,同时又要满足结构简单、方便控制的要求。机器人的腿机构主要分为开式链机构和闭式链机构。开式链机构结构简单,工作空间大,但承载能力小 ;闭式链机构刚性好,承载能力大,功耗小,但工作空间小。 腿机构应满足以下要求:从运动角度出发,足端相对与机身应走直线轨迹,为了在不平坦地面行走,腿的伸长应该是可变的;从整体的行走性能出发,一方面要求机体能走出直线运动轨迹或平面曲线轨迹(在严重崎岖不平地面),另一方面要求转向;从承受载荷方面,腿机构应具备与整机重量想适应的刚性和承载能力;从机构设计要求方面,腿机构不能过于复杂,杆 件数量多的腿机构形式,会导致结构复杂难以实现。因此,腿机构设计需要保证实现运动、承黑龙江八一农垦大学毕业论文(设计) 能力要求、结构易实现和方便控制。 行走机构的腿机构分为开链机构和闭链机构两大类。开链机构的特点是工作空间大,结构简单,但承载能力小,刚度和精度差,为了克服开链机构的缺陷,发展了闭链机构。闭链机构刚性好,承载能力大,功耗较小,但工作空间有局限性,分析比较,本文选择闭链腿机构进行研究。 闭链腿机构应用最广的是平面闭链机构。带平面闭链机构的步行机构多采用双层机架实现转向,也可以在平面闭链机构再增加一个摆动自由度来实现转向。腿机构运 动要求的必要条件是: ( 1)机构所含运动副是转动副或移动副; ( 2)机构的自由度不能大于 2; ( 3)机构的杆件数目不宜太多; ( 4)须有连杆曲线为直线的点; ( 5)足机构上的点,相对于机身高度是可变的; ( 6)机构需有腿的基本形状。 腿机构的性能要求有: ( 1)推进运动、抬腿运动最好是独立的; ( 2)机构的输入和输出运动关系应尽可能简单; ( 3)平面连杆机构不能与其他关节发生干涉; ( 4)实现直线运动的近似程度,不能因直线位置的改变而发生较大的变化。 全部满足上述各项条件的腿部机构是困难的,在设计时,应以 尽可能满足以上条件的腿部机构为努力目标,同时选择或设计最适合的步行腿机构。 目前常用的腿机构有以下几种形式:埃万斯机构,正缩放机构,斜缩放机构和拟缩放机构。迄今为止,国内外步行机构腿的基本机构形式不外乎关节型,缩放型和拟缩放型。这些机构虽然各有特点,但也都有不足之处。目前对于哪些机构作为腿机构合适,哪些机构类型较为优越,尚缺乏深入的研究。 行走机构腿按照自由度划分为 一个自由度的结构可以由四杆、六杆、八杆等组成。四杆机构只有一个闭环,其运动链基本形式只有一种。六杆机构具有两个闭环,其运动链的 基本形式有两种:瓦特型和斯蒂芬型,八杆运动链具有三个闭环,其运动链基本形式有十六种。 二个自由度的机构可以由五杆机构、七杆机构、九杆机构等组成,其运动链基本形式有多种。关节型,缩放型和拟缩放型等相对成熟和使用较多的机构都是两个自由度,两个自由度的行走机构可以实现前进和抬腿两个方向上的独立运动,但两个自由度的机构输入和输出运动关系比较复杂。 本设计中,将采用斯蒂芬( 六杆机构作为步行机构,以黑龙江八一农垦大学毕业论文(设计) 杆组作为步行器的大小腿,并使其足端具有符合需要的相对运动轨迹,二杆组的构件应尽量 接近于大小腿的结构,以四杆机构作为驱动机构。以二杆组作为腿机构,如图 2示, A 为跨关节, B 为膝关节, C 作为足端。 以二杆组作为腿机构,如图 2示, A 为跨关节, B 为膝关节, C 作为足端。 图 2机构示意图 步行机构的运动轨迹选为近似矩形的形状,因为此时能够保证有效成功的跨过障碍物,以防止跨过障碍物之前,其足端就落下,从而失去平衡。 暂取 分别为 179足端的相对运动轨迹为对称于图 1 的 y 轴,并且 当 C 点到达 端点时,大 小腿近似于拉直。这样取得的足端轨迹上的 24 个点的坐标值如表 2里选定步行机构的步距为 S=14足高度 h= 表 2标值表 点位置 1 2 3 4 5 6 7 8 9 10 11 12 X 7 33 33 33 33 位置 13 14 15 16 17 18 19 20 21 22 23 24 X 2 6 7 3 3 33 33 33 下面分析绞链点 D 的轨迹,按照图 2所建立的坐标,首先建立 D 的位置方程 黑龙江八一农垦大学毕业论文(设计) co (2co (2因为 大腿的长度,其为所取的定长,列方程 2122 (2把式 (2(2入式 (2并简化得 02 )(s i ns i nc o (2式 (2询数学手册,可以解 得: rc 2222(2其 22222212 将 用 C 点的位置坐标表示后,可得 D 点的位置坐标 )c o s (3 (2)c o s (3 (2式 (2 (2的 3l 和 是决定 D 点相对于动杆 置的参数,两个参数不同, D 点连杆曲线也不同,当 3l 和 取一系列不同数值时,可以绘制出D 的图谱如图 2 黑龙江八一农垦大学毕业论文(设计) 2谱 D 点轨迹由一个四杆机构实现,为了驱动方便,取四杆机构为曲柄摇杆机构。对照四杆机构图谱,只有 1010 ,能在图谱中找到,综合考虑 D 点轨迹与图谱连杆曲线一致性以及机构具有好的构形,确定 D 的位置尺寸为 , 9 ,相应四杆机构为下图 2 图 2 15 四杆机构图 其连杆点 D 与 D 点轨迹具有相似的形状,该四杆机构的相对尺寸为: 1 2 2, 将相对尺寸折合成绝对尺寸为:(单位为 7654 根据 D 点轨迹相等的原则,进行装配,其装配尺寸为: 黑龙江八一农垦大学毕业论文(设计) ff 其装配后的图形为图 2示: 图 2撑与摆动组合协调控制器 (1)问题的提出 由于设计上的限制,四 足步行机器人在关节层面上设置驱动器,关节层面的驱动空间是非直觉的。描述关节运动的数学方程一般都使用三角函数,引起的非线性控制问题,常常难以理解和形象化。例如,怎样确定躁关节、膝关节和艘关节的转矩才能取得四足机器人的协调平滑运动呢 ?用逆运动学方法,以足底轨迹求得关节转角,进而驱动关节实现机器人运动,虽可实现四足机器人的动态步行,但运动的平滑性较差。这是因为,该控制方法在关节空间上采用直接位置控制驱动关节,而不是直接考虑关节空间的驱动力矩。在四足机器人动态步行时,摆动腿的非直接力矩控制,对运动的平滑性影响并不明 显,摆动腿的摆动效果也不错。但在控制支撑腿关节运动时,由于支撑腿与地非铰链黑龙江八一农垦大学毕业论文(设计) 接,且支撑腿需驱动机器人机体向前运动,不直接考虑关节空间驱动转矩的关节位置控制方法,对运动的平滑性带来了不利的影响。此控制方法不适合支撑腿的驱动控制。 (2)虚拟模型直觉控制解决方案 为使机器人系统控制简单、直观。美国麻省理工学院的 出了虚拟模型控制的概念步行机器人虚拟模型控制的要素是虚拟构件和虚拟模型。 虚拟构件是连接机器人末端和本体的假想结构,它将描述末端行为的期望变量转变为作用于末端的广义虚拟力,虚拟构件可以是虚拟弹簧 、阻尼器甚至肌肉等任何假想的元件。虚拟构件的选择取决于末端的期望运动。期望运动确定了虚拟构件的参数,并由虚拟构件产生末端的虚拟力。 虚拟模型将广义虚拟力映射为相关的实际关节转矩。广义虚拟力的关节转矩映射,通过推导末端到本体的运动学、计算本体到末端串行连杆的雅可比矩阵、雅可比矩阵将虚拟力映射为实际关节转矩,这三个步骤实现。 图 2由末端的期望位置到实际关节转矩的映射示意如图 2示 。 在虚拟模型控制中虚拟构件用于描述机器人的期望行为。步行运动变化为虚拟构件的参数 调整。如果期望机器人维持某一高度可以在机器人本体和地面之间连接一个虚拟弹簧构件。机器人本体的维持高度可以通过改变弹黄系数来调节。 利用虚拟构件可将期望的机器人行为转变为作用于机器人上的一般虚拟力。虚拟力通过虚拟模型映射成关节转矩。当实际转矩作用于关节时,机器人的行为就像真的有虚拟构件作用于其上一样。 本文将 虚拟模型控制概念,推广并应用到 对角小跑动态步行。对角小跑位于对角的两腿动作完全相同,或与地接触支撑机体,或摆动向前找寻新的支撑点。对角支撑交互,完成步行运动。针对支撑腿控制采用 传统方法机体平滑性较差这一现象,提出以虚拟模型控制实现对支撑腿的控制,对摆动腿的控制仍然采用,以足底轨迹映射关节空间位置的传统方法。 虚拟模型控制的一个重要步骤是确定物理本体和末端,设计期望的运动变量。将虚拟模型控制用于支撑腿的控制时,通常设置足底为本体,机体为末端。一旦确定了本体和末端,下一个关键步骤是设计一个有效的虚拟构件。设计的基础来源于经验和直觉 度或力之后即可构造虚拟构件,通过虚拟模型的输出实现对期望任务运动所需的实际关节转矩。 黑龙江八一农垦大学毕业论文(设计) 3)支撑与摆动组合协调控制器 虚拟模型控制特别 适合控制诸如步行、奔跑、跳舞等复杂任务,为了实现四足机器人的步行控制任务,必须将步行这一复杂的任务分解成多个子任务。例如四足步行机器人的对角小跑动态步行,可分解为稳定机体高度,稳定机体俯仰,稳定步行速度,摆动腿摆动,支律腿转换等
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。