




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 多重共线性 一、多重共线性的概念 二、多重共线性的后果 三、多重共线性的检验 四、克服多重共线性的方法 五、案例 Multi-Collinearity 一、多重共线性的概念 1、多重共线性 对于模型 Yi=0+1X1i+2X2i+ +kXki+i i=1,2,n (2.8.1) 其基本假设之一是 解释变量是互相独立的 。 如果某两个或多个解释变量之间出现了相关性 ,则称为 多重共线性 。 如果存在 c1X1i+c2X2i+ ckXki=0 i=1,2,n (2.8.2) 其中 : ci不全为 0,即某一个解释变量可以用其它 解释变量的线性组合表示,则称为解释变量间存在 完 全共线性 (此时利用最小二乘法推导出的正规方程没有唯一解 )。 如果存在 c1X1i+c2X2i+ ckXki+vi=0 i=1,2,n (2.8.3) 其中 ci不全为 0, vi为随机误差项,则称为 一般共线性 ( 近似共线性 )或交互相关 (intercorrelated)。 完全共线性与一般共线性 |XX|=0 在矩阵表示的线性回归模型 Y=XB+N 中,完全共线性指:秩 (X)k+1,即矩阵 注意: 完全共线性的情况并不多见,一 般出现的是在一定程度上的共线性 ,即近似共线性 。 例如, X2=X1,这时 X1与 X2的相关 系数为 1,解释变量 X2对因变量的作 用完全可由 X1代替。 2、产生多重共线性的背景 经济变量的共同变化趋势 时间序列样本: 经济 繁荣时期 ,各基本 经济变量(收入、消费、投资、价格)都趋于 增长; 衰退时期 ,又同时趋于下降。 横截面数据: 生产函数中 , 资本投入与 劳动力投入往往出现高度相关情况,大企业二 者都大,小企业都小。 滞后变量的引入 在计量经济模型中,往往需要引入滞后经济变 量来反映真实的经济关系。 例如, 消费 =f(当期收入 , 前 期收入) 显然,两期收入间有较强的线性相关性 。 一般经验 对于采用 时间序列数据 作样本、以简单线性形 式建立的计量经济学模型,往往存在多重共线性 。 以 截面数据 作样本时,问题不那么严重,但多 重共线性仍然是存在的。 二、多重共线性的后果 1、完全共线性下参数估计量不存在(不确定) 如果存在完全共线性,则 (X X)-1不存在,无法 得到参数的估计量。 2、近似共线性下普通最小二乘法参数估计量非有效 在一般共线性(或称近似共线性)下,虽 然可以得到 OLS法参数估计量,但是由参数估 计量方差的表达式为 可见,由于此时 |XX| 0, 引起 (XX) -1主对 角线元素较大,从而使参数估计值的方差增大, OLS参数估计量非有效。 即:多重共线性使参数估计值的方差增大,方 差扩大因子 VIF(Variance Inflation Factor)为 1/(1-r2), 其增大趋势见下表: 3、参数估计量经济含义不合理 如果模型中两个解释变量具有线性相关性, 例如 X1和 X2, 那么它们中的一个变量可以由另一 个变量表征。 这时, X1和 X2前的参数并不反映各自与被解 释变量之间的结构关系,而是反映它们对被解释 变量的共同影响( 局部效应 )。 所以各自的参数已经失去了应有的经济含义 ,于是经常表现出似乎反常的现象,例如本来应 该是正的,结果恰是负的。 4、变量的显著性检验失去意义 存在多重共线性时 参数估计值的方差与标准差变大 使 t统计量的拒绝域变小(临界值增大) 容易使通过样本计算的 t值小于临界值, 误导作出参数为 0的推断 可能将重要的解释变量 排除 在模型之外 5、模型的预测功能失效 变大的方差容易使区间预测的 “ 区间 ” 变大, 使预测失去意义。 三、多重共线性的检验 由于多重共线性表现为解释变量之间具有相关 关系,所以 用于多重共线性的检验方法主要是统 计方法:如 判定系数检验法、逐步回归检验法等 。 多重共线性检验的任务 是 : ( 1)检验多重共线性是否存在; ( 2)估计多重共线性的范围,即判断哪些变量 之间存在共线性。 1、检验多重共线性是否存在 (1)对两个解释变量的模型,采用 简单相关系数法 求出 X1与 X2的简单相关系数 r, 若 |r|接近 1,则 说明两变量存在较强的多重共线性。 Eviews中直接选用 Correlation命令 (2)对多个解释变量的模型,采用 综合统计检验法 若 在 OLS法下,模型的 R2与 F值较大,但各参数 估计值的 t检验值较小, 说明各解释变量对 Y的联合 线性作用显著,但各解释变量间存在共线性而使得 它们对 Y的独立作用不能分辨,故 t检验不显著。 2、判明存在多重共线性的范围 (1) 判定系数检验法 使模型中每一个 解释变量 分别以 其余解释变 量 为解释变量进行回归计算,并计算相应的拟合 优度,也称为判定系数。如果在某一种形式 Xji=1X1i+2X2i+ LXLi 中 判定系数 较大,则说明在该形式中作为被解释 变量的 Xj可以用其他 X的线性组合代替,即 Xj与其 它 X之间存在共线性。 式中: Rj2为第 j个解释变量对其他解释变量的 回归方程的决定系数, 若存在较强的共线性,则 Rj2较大且接近于 1, 这时( 1- Rj2 ) 较小,从而 Fj的值较大。因此,可 以在给定的显著性水平 下 ,通过计算 F值的方法进 行检验。 等价的检验是对上述回归方程作 F检验 另一等价的检验 : 在模型中排除某一个解释变量 Xj, 估计模型, 如果拟合优度与包含 Xj时十分接近,则说明 Xj与 其它解释变量之间存在共线性。 (2) 逐步回归法 以 Y为被解释变量,逐个引入解释变量,构成 回归模型,进行模型估计。 根据拟合优度的变化决定新引入的变量是否 可以用其它变量的线性组合代替,而不作为独立 的解释变量。 如果拟合优度变化显著, 则说明新引入的变 量是一个独立解释变量; 如果拟合优度变化很不显著, 则说明新引入 的变量不是一个独立解释变量,它可以用其它变 量的线性组合代替,也就是说它与其它变量之间 存在共线性关系。 四、克服多重共线性的方法 1、第一类方法:排除引起共线性的变量 找出引起多重共线性的解释变量,将它排除出去, 是最为有效的克服多重共线性问题的方法。以逐步回 归法得到最广泛的应用。 注意: 剩余解释变量参数的经济含义和数值都发生了变化。 2、第二类方法:差分法 对于以时间序列数据为样本、以直接线 性关系为模型关系形式的计量经济学模型 ,将原模型变换为差分模型 Yi=1 X1i+2 X2i+ +k Xki+ i 可以有效地消除存在于原模型中的多重共 线性。 一般讲,增量之间的线性关系远比总量 之间的线性关系弱得多。 例如:在中国消费模型中的 2个变量: 进一步分析: Y与 C(-1)之间的判定系数为: 0.9845, Y与 C(-1)之间的判定系数: 0.7456。 一般认为: 两个变量之间的判定系数大于 0.8 时,二者之间存在线性关系。 所以,原模型经检验地被认为具有多重共线性 ,而差分模型则可认为不具有多重共线性。 由表中的比值可以直观地看到由表中的比值可以直观地看到 : 两变量增量的线性关系弱于总量之间的线性关系 (即有个容易看出的趋势)。 3、第三类方法:减小参数估计量的方差 多重共线性的主要后果是参数估计量具有较 大的方差,所以采取适当方法减小参数估计量的 方差,虽然没有消除模型中的多重共线性,但确 能消除多重共线性造成的后果。 例如, 增加样本容量 ,可使参数估计量的方差 减小(见第 16课件)。 岭回归法 ( Ridge Regression) 70年代发展的岭回归法, 以引入偏误为代价减小 参数估计量的方差, 受到人们的重视。 具体方法是:引入矩阵 D, 使参数估计量为 其中矩阵 D一般选择为主对角阵,即 D=LI (2.6.6) L为大于 0的常数, L ( 0, 1) 。 显然,与未含 D的参数 B的估计量相比, (2.6.5)的估计量有较小的方差。 五、案例:服装市场需求函数 1、建立模型 根据理论和经验分析,影响居民服装类支出的 主要因素有:可支配收入、居民流动资产拥有量 、服装价格指数、物价总指数。 已知某地区的有关资料,根据散点图判断, 建立线性服装消费支出模型: Y=0+1X+2K+3P1+4P0+ 2、样本数据 由于 R2 0.9965较大 且接近于 1,而且 F=638.4, 大于临界值: F 0.05(4,5)=15.19, 故认为服装支出 与上述解释变量间总体线性关系显著。 但由于参数 K的估计值的 t检验值较小 (未能通过 检验),故 解释变量间存在多重共线性 。 3、估计模型 ( 2)检验简单相关系数 各解释变量间存在高度相关性,其中尤其以 P1 , P0间的相关系数为最高( 0.9918)。 ( 3)找出最简单的回归形式 可见,应选 为初始的回归模型。 ( 4)逐步回归 将其他解释变量分别导入上述初始回归模型 ,寻找最佳回归方程。 4、讨论: 在初始模型中引入 P1, 模型拟合优度提高,且 参数符号合理,但 P1的 t检验未通过; 再引入 K, 拟合优度虽有提高,但 K与 P1的 t检验 未能通过,且 X与 P1的 t检验值及 F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习动机对教育成效的影响研究
- 中国立式二合一贴合机行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2024-2030年中国粮油食品行业市场发展监测及投资方向研究报告
- 调光玻璃行业深度研究分析报告(2024-2030版)
- 中国座椅行业市场深度分析及投资策略研究报告
- 水毁修复可行性研究报告
- 2025年电力电气设备项目节能评估报告(节能专)
- 中国网安系统行业市场深度分析及投资潜力预测报告
- 2025年医院医疗废物管理整改报告
- 游戏化在职业教育中的影响与价值
- 测控电路复习题及答案
- BEC商务英语中级考试阅读真题
- 单元体吊装方案优质资料
- GB/T 41735-2022绿色制造激光表面清洗技术规范
- MT/T 198-1996煤矿用液压凿岩机通用技术条件
- LY/T 1787-2016非结构用集成材
- GB/T 3880.3-2012一般工业用铝及铝合金板、带材第3部分:尺寸偏差
- GB/T 1503-2008铸钢轧辊
- GB/T 12729.1-2008香辛料和调味品名称
- GB/T 1228-2006钢结构用高强度大六角头螺栓
- GB 4404.3-2010粮食作物种子第3部分:荞麦
评论
0/150
提交评论