【步步高 学案导学设计】2014-2015学年高中数学 第1-5章(章末总结+章末检测+模块综合检测)(打包17套)北师大版选修2-2
收藏
资源目录
压缩包内文档预览:
编号:1168257
类型:共享资源
大小:670.71KB
格式:RAR
上传时间:2017-04-26
上传人:me****88
IP属地:江西
3.6
积分
- 关 键 词:
-
步步高
学案导学
设计
学年
高中数学
总结
检测
模块
综合
打包
17
北师大
选修
- 资源描述:
-
【步步高 学案导学设计】2014-2015学年高中数学 第1-5章(章末总结+章末检测+模块综合检测)(打包17套)北师大版选修2-2,步步高,学案导学,设计,学年,高中数学,总结,检测,模块,综合,打包,17,北师大,选修
- 内容简介:
-
1 【步步高 学案导学设计】 2014年高中数学 第一章 推理与证明章末总结 北师大版选修 2识点一 合情推理 归纳和类比是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理,从推理形式上看,归纳是由部分到整体,个别到一般的推理,类比是由特殊到特殊的推理 例 1 在平面上有 n 条直线,任何两条都不平行,并且任何三条都不交于同一点,问这些直线把平面分成多少部分? 例 2 已知点 O 是 任意一点,连接 延长交边于 A 、 B 、 C ,则 A B C 1,这是一道平面几何题,其证明常采用 “ 面积法 ” : A B C S S S S 1,那么在空间四面体 A 存在怎样的结论?并证明 2 知识点二 演绎推理 合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确从二者在认识事物的过程中所发挥作用的角度考虑,它们又是紧密联系,相辅相成的合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得,合情推理可以为演绎推理提供方向和思 路 例 3 已知函数 f(x) 中 a0, b0, x (0, ) ,确定 f(x)的单调区间,并证明在每个单调区间上的增减性 知识点三 综合法与分析法 综合法和分析法是直接证明中的两种最基本的证明方法,但两种证明方法思路截然相反,分析法既可用于寻找解题思路,也可以是完整的证明过程,分析法和综合法可相互转换,相互渗透,充分利用这一辩证关系,在解题中综合法和分析法联合运用,转换解题思路,增加解题途径 例 4 已知 a, b, c R ,且 a b c 1, 求证: 1a 1 1b 1 1c 1 8. 知识点四 反证法 反证法是间接证明的一种基本方法,它不去直接证明结论,而是先否定结论,在否定结论的基础上,运用正确的推理,导出矛盾,从而肯定结论的真实性在证明一些否定性命题、唯一性命题或含有 “ 至多 ” 、 “ 至少 ” 等字句的命题时,正面证明较难,可考虑反证法,即“ 正难则反 ” 3 例 5 已知 a, b, c (0,1)求证: (1 a)b, (1 b)c, (1 c)a 不可能都大于 14. 例 6 如图所示,已知两直线 l m O, l , m , l ,m , l 与 m 中至少有一条与 相交 知识点五 数学归纳法 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真 实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明 “ 当 n k 1 时结论正确 ” 的过程中,必须用 “ 归纳假设 ” ,否则就是错误的 例 7 数列 |足 2n n N ) (1)计算 由此猜想通项公式; (2)用数学归纳法证明 (1)中的猜想 答 案 重点解读 例 1 解 设 n 条直线分平面为 实验观察特例有如下结果: n 1 2 3 4 5 6 4 7 11 16 22 n 与 1有如下关系: n 1 2 3 4 5 6 4 7 11 16 22 1 2 3 4 5 6 观察上表发现如下规律: 1 n(n 2,3, ) 这是因为在 n 1条直线后添加第 n 1)条直线截得的 应地增加 n 部分,所以 1 n,即 1 n. 从而 2, 3, 4, , 1 n. 将上面各式相加有 2 3 n, 2 3 n 2 2 3 n 1 n n2 . 例 2 解 在四面体 A ,任取一点 O,连接 延长交对面于 A 、 4 B 、 C 、 D , 则有 A B C D 1. 证明如下: 在四面体 O A , A 同理有 B C D A B C D 1, 即 A B C D 1. 例 3 解 f(x)的单调区间为 0, , 证明:设 00,0b, f( f(0,即 f(f( f(x)在 0, 是减函数 当 x2 则 , (1 b)c14, (1 c)a14, 三式相乘得: (1 a) a(1 b) b(1 c) c 143 , 又因为 0a1, 0a(1 a) a 1 14, 同理 0b(1 b) 14, 0c(1 c) 14, 所以 (1 a)a(1 b)b(1 c)c 143 , 与 矛盾,所以假设不成立,故原命题成立 例 6 证明 假设 l, m 都不与 相交, l , m , l 且 m . 又 l , m , a, l a, m a, l m. 这与已知 l、 m 是相交直线矛盾 因此 l 和 m 至少有一条与 相交 例 7 (1)解 当 n 1 时, 2 1,同理可得 32, 74, 158 , 猜想 2n 12n 1 . (2)证明 2n 当 n2 时, 1 2(n 1) 1, 可得当 n2 时, 1 1 121, 当 n 1 时, 1 满足 21 121 1 1, 假设当 n k 时, 2k 12k 1 , 6 当 n
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。