14.1 坐标系与参数方程.ppt

【步步高】2011届高考数学一轮复习 第十四编 系列4选讲课件 理 (打包2套)新人教A版

收藏

压缩包内文档预览:(预览前20页/共39页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:1171165    类型:共享资源    大小:899.44KB    格式:RAR    上传时间:2017-04-26 上传人:me****88 IP属地:江西
3.6
积分
关 键 词:
步步高 高考 数学 一轮 复习 温习 第十四 系列 课件 打包 新人
资源描述:
【步步高】2011届高考数学一轮复习 第十四编 系列4选讲课件 理 (打包2套)新人教A版,步步高,高考,数学,一轮,复习,温习,第十四,系列,课件,打包,新人
内容简介:
第十四编 系列 4 选讲 坐标系与参数方程 要 点 梳理 1 极坐标系的概念 在平面上取一个定点 O 叫做 ; 自点 O 引一条射线 做 ; 再选定一个长度单位、角度单位 ( 通 常取弧度 ) 及其正方向 ( 通常取逆时针方向为正方 向 ) ,这样就建立了一个极坐标系 基础知识 自主学习 极点 极轴 设 M 是平面上任一点 , 极点 O 与点 M 的距离 叫做点 M 的 ,记为 _ _ _ ; 以极轴 始边, 射线 终边的 叫做点 M 的 ,记为 _ . 有序数对 ( , ) 称为点 M 的极坐标 , 记作 . 2 直角坐标与极坐标的互化 把直角坐标系的原点作 为极点 , x 轴 正半轴作为极轴 , 且在两坐标系中取 相同的长度单位 . 设 M 是平面内的 任意一点 , 它的直角坐标、极坐标分 别为 ( x , y ) 和 ( , ) ,则 x c y ,2 x 0 )极径 极角 M( , ) 3 直线的极坐标方程 若直线过点 M ( 0, 0) ,且极轴到此直线的角为 , 则它的方程为 _ _ _ _ 几个特殊位置的直线的极坐标方程 ( 1) 直线过极点: _ _ 和 _ ; ( 2) 直线过点 M ( a, 0) 且垂直于极轴: _ _ ; ( 3) 直线过点 M ( b ,2) 且平行于极轴: _ _ . 4 圆的极坐标方程 若圆心为 M ( 0, 0) ,半径为 r 的圆方程为 2 2 0 c 0) 0. ) 00 ) 0 0 a b 20 几个特殊位置的圆的极坐标方程 ( 1) 当圆心位于极点,半径为 r : ; ( 2) 当圆心位于 M ( a, 0 ) ,半径为 a : ; ( 3) 当圆心位于 M ( a ,2) ,半径为 a : _ _ . 5 常见曲线的参数方程的一般形式 (1 ) 经过点 ,倾斜角为 的直线的参数方 程为x t c y t ( t 为参数 ) r 2 2 ., 0 的数量表示有向线段则是直线上的任一点设 ) 圆的参数方程 x r c y r ( 为参数 ) (3) 圆锥曲线的参数方程 椭圆 1 的参数方程为x a c y b ( 为参数 ) ; 双曲线 1 的参数方程为x a se c y b ( 为参数 ) ; 抛物线 2 参数方程为x 2 2 t 为参数 ) 基础自测 1 在极坐标系中,与点3 ,3关于极轴所在直线对 称的点的极坐标为 ( ) A.3 ,23 B .3 ,3C.3 ,43 D .3 ,56 B 2 极坐标方程 c 4 表示的曲线是 ( ) A 一条平行于极轴的直线 B 一条垂直于极轴的直线 C 圆心在极轴上的圆 D 过极点的圆 B 3 参数方程x t 1 2( t 为参数 ) 表示的曲线是 ( ) A 一条直线 B 两条直线 C 一条射线 D 两条射线 4 设曲线的极坐标 方程为 2 a ( a 0) ,则它表示 的曲 线是 ( ) A 圆心在 点 ( a, 0) 直径为 a 的圆 B 圆心在点 (0 , a ) 直径为 a 的圆 C 圆 心在点 ( a, 0) 直径为 2 a 的圆 D 圆心 在点 (0 , a ) 直径为 2 a 的圆 D D 5 ( 200 9 广东 ) 若直 线x 1 2 t ,y 2 3 t( t 为参数 ) 与直线 4 x 1 垂直,则常数 k . 解析 直线x 1 2 t ,y 2 3 x 2 y 7 0 , 32. 直线 4 x 1 的斜率 4k, 两直线垂直, 1. k 6. 题型分类 深度剖析 题型一 点的极坐标与直角坐标的互化 【 例 1 】 在极坐标系中,已知三点 M2 ,3、 N ( 2,0) 、 P2 3 ,6. (1) 将 M 、 N 、 P 三点的极坐标化为直角坐标; (2 ) 判 断 M 、 N 、 P 三点是否在一条直线上 解 ( 1) 由公式x c y , 得 M 的直角坐标为 (1 , 3 ) ; N 的直角坐标为 ( 2,0) ; P 的直角坐标为 (3 , 3 ) ( 2) k 32 1 3 , k 3 03 2 3 , k k M 、 N 、 P 三点在一条直线上 探究提高 为了使极坐标与平面上的点一一对应, 我们规定了 0,0 0) 且垂直于极 轴的直线 l 的极坐标方程为 c a . 平行于极轴 且过点 A ( a, 0) ( a 0) 的直线 l 的极坐标方程为 a . 3 圆心在点 A ( 0, ) 半径为 r 的圆方程为 2 20 2 0c ) 方法与技巧 思想方法 感悟提高 1 在曲线方程之间的互化时,要做到互化准确,不 重不漏,保持转化后形式的纯粹性与完备性 2 直线的参数方程: ( t 为参数), 其中 M 0 (x 0 ,y 0 )为直线 l 上的定点,角 为直线 l 的 倾 斜角,参数 t 的几何意义: t= M 0 M ,即直线上从已 知点 M 0 到点 M (x ,y )的有向线段 的数量 , 当点 M ( x , y ) 在点 t 0 ;当点 M 在点 t 0. 失误与防范 s o 定时检测 一、选择题 1. 在极坐标系中 , 点 P ( 0 , 0 ) ( 0 0) 关于极点的对称 点的极坐标是 ( ) A. ( 0 , 0 ) B ( 0 , 0 ) C. ( 0 , 0 ) D ( 0 , 0 ) A 2. 曲线的极坐标方程为 2c 1 的直角坐标方程 为 ( ) A. y 12214B.x 122 4C 4D 1 B 3 过 点2 ,4平行于极轴的直线的极坐标方程是 ( ) A c 4 B 4 C 2 D c 2 C 4 曲线的参数方程是x 1 1 1 t 是参数, t 0) , 它的普通方程是 ( ) A ( x 1)2( y 1) 1 B y x ( x 2 )( 1 x )2 C y 1 D y 1( 1 x )2 1 解析 由 x 1 1t,解得 t 11 x, 代入 y 1 t 2 ,得 y 1 1( 1 x ) 2x ( x 2 )( 1 x ) 2. B 5 直线 c 2 关于直线 4对称的直线方程为 ( ) A c 2 B 2 C 2 D 2 解析 直线 x 2 关于直线 y x 的对称直线是 y 2 , 2. B 6 过点 ( 0,2) 且与直线x 2 1 3 t( t 为参数 ) 的夹角 为 30 的直线方程为 ( ) A y x 33和 x 0 B y 33x 2 和 y 0 C y 33x 2 和 x 0 D y 2 33x 3 和 x 0 解析 直线 x 2 1 3 k 3 . 倾斜角为 60 ,所求直线的倾斜角为 30 或 90 . C 二、填空题 7 在极坐标系中,以2为圆心, 的 方程为 _ _ _ _ _ 解析 圆的直径为 a ,设圆心为 C ,在圆上任取一 点 A ( , ) , 则 2 或 2,即 2. 又 a c a c o s 2 a . 圆的方程是 a . a 8 极坐标方程分别为 2c 和 si n 的两个圆 的圆心距为 _ _ _ _ 解析 两圆方程分别为 2 x , y , 知两圆圆心 C 1 ( 1,0) , C 20 ,12, | C 1 C 2 | 1212252. 52 9 在直角坐标系中圆 C 的参数方程为x 2c ,y 2 2si n ( 为参数 ) , 若以原点 O 为极点 , 以 x 轴正半轴为极轴 建立极坐标系,则圆 C 的极坐标方程为 _ _ _ 解析 由参数方程消去 得圆的方程为 ( y 2)2 4 ,将 x c , y ,代入得 ( c )2 ( 2)2 4 ,整理得 4 . 4s 三、解答题 10 已知曲线 C 的极坐标方程是 2si n ,设直线 l 的参数方程是x 3 t 2 ,y 4 t( t 为参数 ) 判 断直线 l 和曲线 C 的位置关系 解 曲线 C 的极坐标方程可化为 2 2 , 由2 y ,可得曲线 C 的直角坐标方程为 2 y 0. 将直线 l 的参数方程化为直角坐标方程得 4 x 3 y 8 0 , 又曲线 C 为圆,圆 C 的圆心坐标为 ( 0,1) , 半径 r 1 , 则圆心 C 到直线 l 的距离|3 1 8|42 32 1 r , 直线 l 与圆 C 相切 11 求经过极点 O ( 0,0) , A6 ,2 , B 6 2 ,94 三点 的圆的极坐标方程 解 将点的极坐标化为直角坐标,点 O , A , B 的直 角坐标分别为 ( 0,0) , ( 0, 6) , ( 6,6) ,故 是以 为斜边的等腰直角三角形,圆心为 ( 3,3) ,半径为 3 2 , 圆的直角坐标方程为 ( x 3)2 ( y 3)2 18 ,即 6 x 6 y 0 ,将 x c , y 代入上述方 程,得 2 6 ( c ) 0 ,即 6 2 c 4. 12 已知直线 l 的参数方程为x 4 2 t ,y t 2( t 为 参数 ) , P 是椭圆1 上任意一
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:【步步高】2011届高考数学一轮复习 第十四编 系列4选讲课件 理 (打包2套)新人教A版
链接地址:https://www.renrendoc.com/p-1171165.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!