1.3逻辑联结词(一).ppt

高中数学第1章四种命题的关系全套课件新人教版选修2(精品打包)

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:1184533    类型:共享资源    大小:953.39KB    格式:RAR    上传时间:2017-05-01 上传人:me****88 IP属地:江西
3.6
积分
关 键 词:
高中数学 章四种 命题 关系 瓜葛 全套 课件 新人 选修 精品 打包
资源描述:
高中数学第1章四种命题的关系全套课件新人教版选修2(精品打包),高中数学,章四种,命题,关系,瓜葛,全套,课件,新人,选修,精品,打包
内容简介:
高二数学 选修 2 第一章 常用逻辑用语 2008 歌德是 18世纪德国的一位著名文艺大师,一天,他与一位批评家 “ 狭路相逢 ” ,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高地往前走。一边大声说道: “ 我从来不给傻子让路! ” 而对如此的尴尬的局面,但只是歌德笑容可掏,谦恭的闪在一旁,一边有礼貌回答道 “ 呵呵,我可恰恰相反, ” 结果故作聪明的批评家,反倒自讨没趣。 你能分析此故事中歌德与批评家的言行语句吗? 常用逻辑用语 “ 数学是思维的科学” 逻辑是研究思维形式和规律的科学 . 逻辑用语是我们必不可少的工具 . 通过学习和使用常用逻辑用语 ,掌握常用逻辑用语的用法 ,纠正出现的逻辑错误 ,体会运用常用逻辑用语表述数学内容的准确性、简捷性 . 命题及其关系 命题 思考 下列语句的表述形式有什么特点 ?你能判断 它们的真假吗 ? ( 1) 125; ( 2) 3是 12的约数 ; ( 3) ( 4)对顶角相等 ; ( 5) 3 能被 2整除 ; ( 6)若 ,则 x=1. 语句都是陈述句, 并且可以判断真假。 命题的概念 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。 判断为真的语句叫做真命题。 判断为假的语句叫做假命题。 理解: 1)命题定义的核心是判断,切记:判断的标准 必须确定,判断的结果可真可假,但真假必居其一。 2)含有变量且在未给定变量的值之前无法确定语句的真假。 ( 1) 125; ( 2) 3是 12的约数 ; ( 3) ( 4)对顶角相等 ; ( 5) 3 能被 2整除 ; ( 6)若 ,则 x=1. 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。如何判断一个语句是不是命题? 1) 7是 23的约数吗 ? 2) X5. 3) 6) x4。 看看下列语句是不是命题? 不是(疑问句) 不是(疑问句) 不是(感叹句) 是(否定陈述句) 是(肯定陈述句) 不是(开语句) 例 1 判断下面的语句是否为命题 ?若是命题,指出它的真假。 (1) 空集是任何集合的子集 . (2)若整数 则 (3)指数函数是增函数吗 ? (4)若平面上两条直线不相交 , 则这两条直线平行 . (5) 2( 2 ) 2 (6)x15. (是,真) (是,真) (是,假) (是,假) (不是命题) (不是命题) 练习 判断下列语句是否是命题 . ( 1)求证 是无理数。 ( 2) ( 3)你是高二学生吗? ( 4)并非所有的人都喜欢苹果。 ( 5)一个正整数不是质数就是合数。 ( 6)若 ,则 ( 7) x+30. 32 2 1 0 2 4 7 0 (1)(3)(7)不是命题, (2)(4)(5)(6)是命题。 “若 p则 q”形式的命题 命题 “ 若整数 ” 具有 “ 若 p则 q”的形式。 q p 通常 ,我们把这种形式的命题中的 件 ,论 。 “若 p则 q”形式的命题是命题的一种形式而不是唯一的形式 ,也可写成“如果 p,那么 q” “只要 p,就有q”等形式。 其中 p和 “若 p则 q”形式的命题的优点是条件与结论容易辨别 ,缺点是太格式化且不灵活 . “若 p则 q”形式的命题的书写 了解命题表示的判断 ,明确与判断有关的条件与结论。 对于一些条件与结论不明显的命题 ,一般采取先添补一些命题中省略的词句 , 确定条件与结论。 如命题 :“ 垂直于同一条直线的两个平面平行”。 写成“若 p则 q” 的形式为: 若两个平面垂直于同一条直线,则这两个平面平行。 例 2 指出下列命题中的条件 q: 1) 若整数 整除,则 2) 菱形的对角线互相垂直且平分。 解: 1) 条件 p:整数 整除, 结论 q:整数 a 是偶数。 2) 写成若 p,则 q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件 p:四边形是菱形, 结论 q:四边形的对角线互相垂直且平分。 例 3 把下列命题改写成 “ 若 p则 q”的形式 ,并判定真假。 (1) 负数的平方是正数 . (2) 偶函数的图像关于 (3)垂直于同一条直线的两条直线平行 (4) 面积相等的两个三角形全等 . (5) 对顶角相等 . 真命题 真命题 假命题 假命题 真命题 练习 1、将命题“ a0时,函数 y=ax+写成“ p则 q”的形式,并判断命题的真假。 解答 :a0时,若 函数 y=ax+增加,它是真命题 在本题中, a0是大前提,应单独给出,不能把大前提也放在命题的条件部分内 2、把下列命题改写成“若 p,则 q”的形式,并判断它们的真假 . ( 1)等腰三角形两腰的中线相等; ( 2)偶函数的图象关于 ( 3)垂直于同一个平面的两个平面平行。 (1)若三角形是等腰三角形,则三角形两边上的中线相等。这是真命题。 (2)若函数是偶函数,则函数的图象关于 是真命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。这是假命题。 命题及其关系 四种命题 下列四个命题中,命题 (1)与命题 (2)(3)(4)的条件和结论之间分别有什么关系? 1. 若 f(x)是正弦函数,则 f(x)是周期函数; 2. 若 f(x)是周期函数,则 f(x)是正弦函数; 3. 若 f(x)不是正弦函数,则 f(x)不是周期函数; 4. 若 f(x)不是周期函数,则 f(x)不是正弦函数。 观察命题 (1)与命题 (2)的条件和结论之间分别有什么关系? 1. 若 f(x)是正弦函数,则 f(x)是周期函数; 2. 若 f(x)是周期函数,则 f(x)是正弦函数; 互逆命题 :一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题叫做互逆命题。 原 命 题 :其中一个命题叫做原命题。 逆 命 题 :另一个命题叫做原命题的逆命题。 p q q p 即 原命题 :若 p,则 q 逆命题 :若 q,则 p 例如,命题“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”。 原命题与其逆命题的真假是否存在相关性呢 ? 观察命题 (1)与命题 (3)的条件和结论之间分别有什么关系? 1. 若 f(x)是正弦函数,则 f(x)是周期函数; 3. 若 f(x)不是正弦函数,则 f(x)不是周期函数 . p q p 原命题 :若 p,则 q q 为书写简便 ,常把条件 “ p” “q” 否命题 :若 p,则 q 互否命题 原命题 (原命题的 )否命题 例如,命题“同位角相等,两直线平行”的否命题是“同位角不相等,两直线不平行”。 原命题与其否命题的真假是否存在相关性呢 ? 观察命题 (1)与命题 (4)的条件和结论之间分别有什么关系? 1. 若 f(x)是正弦函数,则 f(x)是周期函数; 4. 若 f(x)不是周期函数,则 f(x)不是正弦函数 . p q q 原命题 : 若 p, 则 q p 逆否命题 : 若 q, 则 p 互为逆否命题 原命题 (原命题的 )逆否命题 例如,命题“同位角相等,两直线平行”的逆否命题是“两直线不平行,同位角不相等”。 原命题与其逆否命题的真假是否存在相关性呢 ? 、 互否命题: 如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做 互否命题 。如果把其中一个命题叫做 原命题 ,那么另一个叫做 原命题的否命题 。 、 互为逆否命题: 如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题 。 、 互逆命题: 如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫 互逆命题 。如果把其中一个命题叫做 原命题 ,那么另一个叫做原命题的 逆命题 。 三个概念 原命题 ,逆命题 ,否命题 ,逆否命题 四种命题形式 : 原命题 : 逆命题 : 否命题 : 逆否命题 : 若 p, 则 q 若 q, 则 p 若 p, 则 q 若 q, 则 p 判断正误 ,并说明理由 : (1)若原命题是“对顶角相等” , 它的否命题是“对顶角不相等”。 (2)若原命题是“对顶角相等” , 它的否命题是“不成对顶关系的 两个角不相等”。 否命题与命题的否定 否命题是用否定条件也否定结论的方式构成新命题。 命题的否定是逻辑联结词 “ 非 ” 作用于判断 ,只否定结论不否定条件。 对于原命题 : 若 p , 则 q 有 否命题 : 若 p , 则 q 。 命题的否定 : 若 p , 则 q 。 例 设原命题是“当 c 0 时,若 a b ,则 ,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假: 解: 逆命题:当 c 0 时,若 则 a b 逆命题为真 否命题:当 c 0 时,若 a b ,则 否命题为真 逆否命题:当 c 0 时,若 则 a b 逆否命题为真 原结论 反设词 原结论 反设词 是 至少有一个 都是 至多有一个 大于 至少有 小于 至多有 对所有 x,成立 对任何 x, 不成立 准确地作出反设 (即否定结论 )是非常重要的 ,下面是一些常见的结论的否定形式 . 不是 不都是 不大于 大于或等于 一个也没有 至少有两个 至多有( 至少有( n+1)个 存在某 x, 不成立 存在某 x, 成立 练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。 ( 1)若 q1,则方程 有实根。 ( 2)若 ,则 a=0或 b=0. 2 20x x q 郑平正制作 2017/5/2 高二数学 选修 2 第一章 常用逻辑用语 2008平正制作 2017/5/2 回顾 交换原命题的条件和结论 , 所得的命题是_ 同时否定原命题的条件和结论 , 所得的命题是 _ 交换原命题的条件和结论 , 并且同时否定 ,所得的命题是 _ 逆命题。 否命题。 逆否命题。 郑平正制作 2017/5/2 原命题 ,逆命题 ,否命题 ,逆否命题 四种命题形式 : 原命题 : 逆命题 : 否命题 : 逆否命题 : 若 p, 则 q 若 q, 则 p 若 p, 则 q 若 q, 则 p 郑平正制作 2017/5/2 观察与思考 ? ( ) ( )f x f 若 是 正 弦 函 数 , 则 是 周 期 函 数 。( ) ( )f x f 若 是 周 期 函 数 , 则 是 正 弦 函 数 。( ) ( )f x f 若 不 是 正 弦 函 数 , 则 不 是 周 期 函 数 。( ) ( )f x f 若 不 是 周 期 函 数 , 则 不 是 正 弦 函 数 。你能说出其中任意两个命题之间的关系吗 ? 课堂小结 原命题 若 p则 q 逆命题 若 q则 p 否命题 若 q 逆否命题 若 p 互否命题真假无关 互否命题真假无关 郑平正制作 2017/5/2 2)原命题:若 a=0, 则 。 逆命题:若 , 则 a=0。 否命题:若 a 0, 则 。 逆否命题:若 ,则 a0。 (真 ) (假 ) (假 ) (真 ) (真 ) 看下面的例子: 1)原命题:若 x=2或 x=3, 则 =0。 逆命题:若 =0, 则 x=2或 x=3。 否命题:若 x2且 x3, 则 0 。 逆否命题:若 0,则 x2且 x3。 (真 ) (真 ) (真 ) 3)原命题:若 x A B,则 x U A 逆命题: x x A B 。 否命题: xA B, x 逆否命题: x xA B 。 假 假 假 郑平正制作 2017/5/2 四种命题的真假 ,有且只有下面四种情况 : 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假 假 假 假 郑平正制作 2017/5/2 想一想? ( 2) 若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。 由以上三例及总结我们能发现什么? 即 原命题与逆否命题同真假。 原命题的逆命题与否命题同真假。 ( 1) 原命题为真,则其逆否命题一定为真。但其逆命题、否 命题不一定为真。 (两个命题为互逆命题或互否命题 ,它们的真假性没有关系 ). 几条结论 : 郑平正制作 2017/5/2 1)一个命题的逆命题为真,它的逆否命题不一定为真; (对) 2)一个命题的否命题为真,它的逆命题一定为真。 (对) )个。 答: 0个、 2个、 4个。 如:原命题:若 A B=A, 则 AB=。 逆命题:若 AB=,则 A B=A。 否命题:若 A BA,则 AB。 逆否命题:若 AB,则 A BA。 (假) (假) (假) (假) 3)一个命题的原命题为假,它的逆命题一定为假。 (错) 4)一个命题的逆否命题为假,它的否命题为假。 (错) 练一练 郑平正制作 2017/5/2 练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。 ( 1)若 么 q2根据幂函数 的单调性,得 即 所以 333( 2 ) ,3 2 38 1 2 6 ,q p p p 3 3 28 1 2 6p q p p 2 16 ( 1 ) ,3p 33 33 因此 郑平正制作 2017/5/2 可能出现矛盾四种情况: 与题设矛盾; 与反设矛盾; 与公理 、 定理矛盾; 在证明过程中 , 推出自相矛盾的结论 。 郑平正制作 2017/5/2 这些条件都与已知 矛盾 0 成立 证明 : 假设 a 0 , b 0所以 a b0,那么 . 郑平正制作 2017/5/2 练 圆的两条不是直径的相交弦不能互相平分。 已知:如图,在 ,且 求证:弦 平分 . 证明: 假设弦 平分, ,连接 据垂径定理的推论, 有 过点 这与垂线性质矛盾, 弦 平分。 郑平正制作 2017/5/2 若 整除, 求证: 整除 . 证:假设 整除 , 则 故可令 a=2m+1(, 由此得 2m+1)2=4m+1=4m(m+1)+1, 此结果表明 这与题中的已知条件 ( 整除 ) 相矛盾 , 整除 . 郑平正制作 2017/5/2 郑平正制作 2017/5/2 U A AB B 逻辑联结词 高中选修 数学 2(新教材) 逻辑联结词“且”“或”“非”的含义 且 :就是两者都有的意思。 或 :就是两者至少有一个的意思(可兼容) 非 :就是否定的意思。 注意 :今后常用小写字母 p,q,r,s, 表示命题。我们把使用逻辑联结词联结而成的命题称为复合命题 。 观察下面的三个命题,它们之间有什么关系? (1)12能被 3整除; (2)12能被 4整除; (3)12能被 3整除且能被 4整除。 可以发现( 3)是由( 1)( 2)使用了联结词“且”得到的复合命题。 (2) 命 题 真 假 的 判 定上题中( 1)( 2)都是真命题,所以( 3)为真命题。 (1)定义: 如果用联结词“且”将命题 p 和命题 q 联结起来,就得到了一个复合命题,记作 读作“ p且 q”. 定: 当 p, 是真命题;当p, 是假命题。 pq、“且”命题 p q 开关 p,则整个电路的接通与断开分别对应命题 的真与假 . 3)p且 命题的真值表 p q p且 q 真 真 真 假 假 真 假 假 假 假 假 真 例 2:用逻辑联结词“且”改写下列命题,并判断它们的真假 ( 1) 1既是奇数,又是素数; ( 2) 2和 3都是素数。 例 1:将下列命题用“且”联结成复合命题,并判断他 们的真假。 ( 1) p:平行四边形的对角线互相平分, q:平行四边形的对角线相等; ( 2) p:菱形的对角线互相垂直, q:菱形的对角线互相平分; ( 3) p: 35是 15的倍数, q: 35是 7的倍数。 观察下列命题之间的关系: ( 1) 27是 7的倍数; ( 2) 27是
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:高中数学第1章四种命题的关系全套课件新人教版选修2(精品打包)
链接地址:https://www.renrendoc.com/p-1184533.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!