北师大七年级下第五章《生活中的轴对称》检测题(B)含答案_第1页
北师大七年级下第五章《生活中的轴对称》检测题(B)含答案_第2页
北师大七年级下第五章《生活中的轴对称》检测题(B)含答案_第3页
北师大七年级下第五章《生活中的轴对称》检测题(B)含答案_第4页
北师大七年级下第五章《生活中的轴对称》检测题(B)含答案_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章生活中的轴对称检测题 B 一选择题 1甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A B C D 2一个等腰三角形一边长为 4一边长为 5么这个等腰三角形的周长是( ) A 13 B 14 C 13 14 D以上都不对 3正方形的对称轴的条数为( ) A 1 B 2 C 3 D 4 4 P 是 一点,分别作点 P 关于直线 对称点 接 下列结论正确的是( ) A B D 如图, 3=30,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证 1 的度数为( ) A 30 B 45 C 60 D 75 6如图, 平分线,点 C, D 分别在角的两边 ,添加下列条件,不能判定 选项是( ) A B D C D D 7用矩形纸片折出直角的平分线,下列折法正确的是( ) A B C D 8如图,把 一张矩形纸片 对角线 叠,点 B 的对应点为 B, 交于点 E,则下列结论一定正确的是( ) A B B C E D E 9如图,四 边形 , C=50, B= D=90, E、 F 分别是 的点,当 周长最小时, 度数为( ) A 50 B 60 C 70 D 80 10如图,在 , C,过点 A 作 1=70,则 大小为( ) A 40 B 30 C 70 D 50 11将一张长方形纸片折叠成如图所示的形状,则 ) A 73 B 56 C 68 D 146 12如图,在 , 垂直平分线, 周长为 19 周长为 13 长为( ) A 3 B 6 C 12 D 16填空题 13如 图,在正方形 方格中,阴影部分是涂黑 7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种 14如图,已知直线 等边三角形如图放置,若 =40,则 等于 15如图, 点 D, F, F=20,则 B 的度数为 16如图,在 , C=90, 角平分线, ,则点 D 到 距离是 17等腰三角形一腰上的高与另一腰的夹角的度数为 20,则顶角的度数是 18在 , , , 角平分线,则 面积之比是 三解答题 19在 3 3 的正方形 格点图中,有 格点 于某直线成轴对称,请在下面给出的图中画出 4 个这样的 20如图,已知 C= 证: C=2 D 21求证:等腰三角形的两底角相等 已知:如图,在 , C 求证: B= C 22如图,在 ,点 D、 E 分别在边 , E, ( 1)说明:其中有几对三角形成轴对称,并指出其对称轴; ( 2)连接 判断直线 线段 关系,并说明理由 23如图,点 P 是 一点,分别作出 P 点关于 对称点 E、 F,连接 A 于 M,交 N, 5,求 周长 24如图,已知 分 D, 足为 E ( 1)求证: ( 2) 若 点 D 到 距离; 当 5, ,求 度数 25在学习轴对称的时候,老师让同学们思 考课本中的探究题 如图( 1),要在燃气管道 l 上修建一个泵站,分别向 A、 B 两镇供气泵站修在管道的什么地方,可使所用的输气管线最短? 你可以在 l 上找几个点试一试,能发现什么规律? 聪明的小华通过独立思考 ,很快得出了 解决这个问题的正确办法他把管道 l 看成一条直线(图( 2),问题就转化为,要在直线 l 上找一点 P,使 和最小他的做法是这样的: 作点 B 关于直线 l 的对称点 B 连接 直线 l 于点 P,则点 P 为所求 请你参考小华的做法解决下 列问题 如图在 ,点 D、 E 分别是 的中点, 上的高为 4,请你在 上确定一点 P,使 周长最小 ( 1)在图中作出点 P(保留作图痕迹,不写作法) ( 2)请直接写出 长的最小值: 参考答案与解析 一选择题 1 【分析】 根据轴对称图形的概念求解 解: A、是轴对称图形,故本选项错误; B、是轴对称图形,故本选项错误; C、是轴对称图形,故本选项错误; D、不是轴对称图形,故本选项正确 故选 D 2 【分析】 分 4等腰三角形的腰和 5等腰三角形的腰,先判断符合不符合三边关系,再求出周长 解:当 4等腰三角形的腰时, 三角形的三边分别是 445合三角形的三边关系, 周长为 13 当 5等腰三角形的腰时, 三边分别是, 554合三角形的三边关系, 周长为 14 故选 C 3 【分析】 根据正方形的对称性解答 解:正方形有 4 条对称轴 故选: D 4 【分析】 作出图形,根据轴对称的性质求出 解:如图, 点 P 关于直线 对称点 P, =2( =2 数任意, 故选: B 5 【分析】 要使白球反弹后能将黑球直接撞入袋中,则 2=60,根据 1、 2 对称,则能求出 1 的度数 解:要使白球反弹后能将黑球直接撞入袋中, 2+ 3=90, 3=30, 2=60, 1=60 故选: C 6 【分析】 要 得到 有的条件为有一对角相等,一条公共边,缺少角,或着是边,根据全等三角形的判定定理即可得到结论于是答案可得 解: A 出 0,根据 定定理成立, B D,根据 定定理成立, C 据 定定理成立, D D,根据 判定定理不成立, 故选 D 7 【分析】 根据图形翻折变换的 性质及角平分线的定义对各选项进行逐一判断 解: A当长方形如 A 所示对折时,其重叠部分两角的和中,一个顶点处小于 90,另一顶点处大于 90,故 A 错误; B当如 B 所示折叠时,其重叠部分两角的和小于 90,故 B 错误; C当如 C 所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故 C 错误; D当如 D 所示折叠时,两角的和是 90,由折叠的性质可知其折痕必是其角的平分线,故 D 正确 故选: D 8 【分析】 根据翻折变换 的性质可得 根据两直线平行,内错角相等可得 而得到 然后根据等角对等边可得 E,从而得解 解: 矩形纸片 对角线 叠,点 B 的对应点为 B, E, 所以,结论正确的是 D 选项 故选 D 9 【分析】 据要使 周长最小, 即利用点的对称,使三角形的三边在同一直线上,作出 A 关于 对称点 A, A,即可得出 + A= 50,进而得出 ( + A),即可得出答案 解:作 A 关于 对称点 A, A,连接 AA,交 E,交 F,则 AA即为 周长最小值作 长线 C=50, 30, 50, + A= 50, = A, A0, 30 50=80, 故选: D 10 【分析】 根据 得出 C= 1=70,再根据 C 即可得出 B= C=70,结合三角形的内角和为 180,即可算出 大小 解: C= 1=70, C, B= C=70, 80 B C=40 故选 A 11 【分析】 根据补角的知识可求出 而根据折叠的性质 得出 度数 解: 4, 80 46, 3 故选 A 12 【分析】 根据线段垂直平分线性质得出 C, E= 出 C+9B+D=C=13可求出 可得出答案 解: 垂直平分线, C, E= 周长为 19 周长为 13 C+9D+B+C=C=13 故选 A 二填空题 13 【分析】 根据轴对 称图形的概念 :把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果 解:在 1, 2, 3 处分别涂黑都可得一个轴对称图形, 故涂法有 3 种, 故答案为: 3 14 【分析】 过点 A 作 图, 根据平行线的性质可得 根据平行线的传递性可得 而得到 =40再根据等边 得到 0,就可求出 而解决问题 解:过点 A 作 图, 则 =40 等边三角形, 0, = 0 40=20 故答案为 20 15 【分析】 由等腰三角形的性质证得 E= F=20,由三角形的外角定理证得 E+ F=40,再由平行线的性质即可求得结论 解: F, F=20, E= F=20, E+ F=40, B= 0, 故答案为: 40 16 【分析】 根据角平分线上的点到角的两边的距离相等可得 C 即可得解 解:作 E, 角平分线, C=90, C, , , 即点 D 到 距离 故答案为: 3 17 【分析】 本题要分情况讨论当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况 解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部 根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是 90+20=110; 当等腰三角形的顶角是锐角时,腰上的高在其内部, 故顶角是 90 20=70 故答案为: 110或 70 18 【分析】 根据角平分 线的性质,可 得出 边 的高与 的高相等,估计三角形的面积公式,即可得出 面积之比等于对应边之比 解: 角平分线, 设 边 的高与 的高分别为 h1= 面积之比 =: 3, 故答案为 4: 3 三解答题 19本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形, 对称轴可以随意确定,因为只要根据你确定的对称轴 去画另一半对称图形,那这两个图形一定是轴对称图形 解:正确 1 个得,全部正确得 20 【分析】 首先根据 C=得 C= D= D;然后根据 得 D,据此判断出 D,再根据 C= 可判断出 C=2 D 证明: C= C= D= D, D, D+ D=2 D, 又 C= C=2 D 21 【分析】 过点 A 作 点 D,利用等 得 全等三角形的性质就可以得出 B= C 证明:过点 A 作 点 D, 0, 在 , , B= C 22 【分析】 ( 1)利用轴对称图形的 性质即可得出答案; ( 2)根据 到 以 C,由全等三角形的性质得出C, C,说明 线段 垂直平分线 解:( 1) 关于 在直线对称, 其对称轴为 在直线; ( 2) C, 点 O 在线段 垂直平分线上, 在 , C, 点 A 在 垂直平分线上, 因此 线段 垂直平分线 23 【分析】 根据轴对称的性质可得 M, N,然后求出 周长 = 解: P 点关于 对称点分别为 E、 F, M, N, 周长 =N+E+N= 5, 周长 =15 24 【分析】 ( 1)由 分 到 据等腰三角形的性质得到 D= 量代换得到 D= 是得到结论; ( 2)解 作 F根 据角平分线的 性质即可得到结论; 根据角平分线的定义得到 0,由平行线的性质得到 0,于是得到结论 ( 1)证明: 分 又 D D= D= ( 2)解: 作 F 分 E=6( 分 0, 0, 80 80

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论