机械毕业设计(论文)-宝来轿车前轮制动器设计【全套图纸】_第1页
机械毕业设计(论文)-宝来轿车前轮制动器设计【全套图纸】_第2页
机械毕业设计(论文)-宝来轿车前轮制动器设计【全套图纸】_第3页
机械毕业设计(论文)-宝来轿车前轮制动器设计【全套图纸】_第4页
机械毕业设计(论文)-宝来轿车前轮制动器设计【全套图纸】_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全套图纸,加全套图纸,加 153893706 题题 目:目:宝莱轿车前轮制动器设计宝莱轿车前轮制动器设计 姓姓 名:名: 班级学号:班级学号: 指导教师:指导教师: 摘 要 - I - 摘摘 要要 汽车制动系的基本功用是使行驶中的汽车减速或停车,在下坡行驶的汽车的车速 保持稳定以及使已停驶的汽车在原地或坡道上驻留不动的机构。汽车制动系直接影响着 汽车的安全性和停车的可靠性。随着高速公路的迅速发展和车速的提高以及车流密度的 日益增大,为了保证行驶安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也 只有制动性能良好、制动系工作可靠的汽车才能充分发挥其动力性能。 汽车的制动系是汽车行车安全的保证,许多制动法规对制动系提出了许多详细而具 体的要求,这是我们设计的出发点。 从制动系的功用及设计的要求出发,依据给定的设计参数,进行方案论证。对各种 形式的制动器的优缺点进行了比较后,选择了前盘后鼓的形式。这样既保证了较高的制 动效能又有很好的稳性。 关键词关键词 制动系; 制动盘; 摩擦块; 制动效能 Abstract - II - Abstract The automobile braking system basic function is causes in the travel the automobile to decelerate or to stop, stabilizes as well as causes already the automobile in the downhill travel automobile vehicle speed maintenance which stops trips in keeps the motionless organization on in-situ or the slopeway. The automobile braking system directly is affecting the reliability which the automobile security and stops. Increase day by day along with the highway rapid development and the vehicle speed enhancement as well as the stream of vehicles density, in order to guarantee the travel is safe, stops reliably, the automobile braking system operational reliability appears day by day importantly. Also only the braking quality to be good, the braking system work reliable automobile can fully display its power performance. The automobile braking system is the automobile traffic safety guarantee, many applied the brake the laws and regulations to propose to the braking system many detailed and concrete request, this was a starting point which we designed. Embarks from the braking system function and the design request, the basis assigns the design variable, carries on the plan proof. Has carried on the comparison after each kind of form brake good and bad points, after has chosen the morning market the drum form. Like this both had guaranteed higher applies the brake the potency and to have the very good stability. Keywords Braking system Brake disc Drag block Braking quality 目 录 - 1 - 目目 录录 摘摘 要要. .I Abstract. .II 第第 1 章章绪论绪论.3 1.1 汽车制动系概述3 1.2 汽车制动器的工作原理5 1.3 毕业设计的目的和意义6 第第 2 章章制动器结构型式及选择制动器结构型式及选择.8 2.1 鼓式制动器的结构型式及选择8 2.2 盘式制动器的结构型式及选择9 2.2.1 定钳盘式制动器 11 2.2.2 浮钳盘式制动器 12 2.2.3 全盘式制动器 12 2.3 盘式和鼓式制动器比较13 第第 3 章章制动系的主要参数及其选择制动系的主要参数及其选择.15 3.1 制动力与制动力分配15 3.1.1 制动时前、后轮的地面法向反作用力 15 3.1.2 前、后制动器制动力的理想分配曲线 17 3.2 具有固定比值的前、后制动器制动力与同步附着系数19 3.3 制动器的制动力矩20 3.4 利用附着系数与制动效率21 第第 4 章章制动器的设计计算制动器的设计计算.23 4.1 原始数据和技术参数23 4.2 参数选择以及数据计算23 4.2.1 盘式制动器主要参数的确定 23 4.2.2 摩擦块磨损均匀性验证 24 4.2.3 紧急制动时前后轮法向反力及附着力距 24 4.2.4 同步附着系数的确定 25 4.2.5 制动器的效率 26 4.2.6 制动力矩以及盘的压力 26 4.2.7 同步附着系数的验算 27 4.2.8 摩擦衬块的磨损特性的验算 27 第第 5 章章制动驱动机构的结构型式选择与设计计算制动驱动机构的结构型式选择与设计计算.28 5.1 制动驱动机构型式28 5.1.1 简单制动系 28 5.1.2 动力制动系 28 5.1.3 伺服制动系 .29 5.2 分路系统30 5.3 液压制动驱动机构的设计计算31 5.3.1 制动轮缸直径 d 的确定 31 5.3.2 制动主缸直径 do 的确定 31 5.3.3 制动踏板力 Fp.32 目 录 - 2 - 5.3.4 制动踏板工作行程 Sp.32 总总 结结 .34 参考文献参考文献 .35 致致 谢谢. .36 毕业论文(设计)用纸 - 3 - 第第 1 章章 绪论绪论 1.1 汽车制动系概述汽车制动系概述 尽可能提高车速是提高运输生产率的主要技术措施之一。但这一切必须以保证行驶 安全行为前提。因此,在宽阔人少的路面上汽车可以高速行驶。但在不平路面上,遇到 障碍物或其它紧急情况时,应降低车速甚至停车。如果汽车不具备这一性能,提高汽车 行驶速度便不可能实现。 制动系是汽车的一个重要组成部分,它直接影响汽车的行驶安全性。随着高速公路 的迅速发展和汽车密度的日益增大,交通事故时有发生。因此,为保证汽车行驶安全, 应提高汽车的制动性能,优化汽车制动系的结构。 制动装置可分为行车制动、驻车制动、应急制动和辅助制动四种装置。其中市行驶 中的汽车减速至停止的制动系叫行车制动系。使已停止的汽车停驻不动的制动系称为驻 车制动系。每种车都必须具备这两种制动系。应急制动系成为第二制动系,他是为了保 证在行车制动系失效时仍能有效的制动。辅助制动系是使汽车下坡时车速稳定的制动系。 汽车制动系统是一套用来使四个车轮减速或停止的零件。当驾驶员踩下制动踏板时, 制动动作开始。踏板装在顶端带销轴的杆件上。踏板的运动促使推杆移动,移向主缸或 离开主缸。 主缸安装在发动机室的隔板上,主缸是一个由驾驶员通过踏板操作的液压泵。当踏 板被踩下,主缸迫使有压力的制动液通过液压管路到四个车轮的每个制动器。液压管路 由钢管和软管组成。它们将压力液从主缸传递到车轮制动器。 盘式制动器多用于汽车的前轮,有不少车辆四个车轮都用盘式制动器。制动盘装在 轮辋上、与车轮及轮胎一起转动。当驾驶员进行制动时,主缸的液体压力传递到盘式制 动器。该压力推动摩擦衬片靠到制动盘上,阻止制动盘转动。 毕业论文(设计)用纸 - 4 - 图图 1-1 汽车制动系统的基本部件汽车制动系统的基本部件 1.液压助力制动器 2.主缸和防抱死装置 3.前盘式制动器 4.制动踏板 5.驻车制动 杆 6.防抱死计算机 7.后盘式制动器 很多汽车都采用助力制动系统减少驾驶员在制动停车时必须加到踏板上的力。助力制动 器一般有两种型式。最常见的型式是利用进气歧管的真空,作用在膜片上提供助力。另 一种型式是采用泵产生液压力提供助力。 驻车制动器总成用来进行机械制动,防止停放的车辆溜车,在液压制动完全失效时 实现停车。绝大部分驶车制动器用来制动两个后车轮。有些前轮驱动的车辆装有前轮驻 车制功器,因为在紧急停车中绝大部分的制动功需要用在车辆的前部。驻车制动器一般 用手柄或脚踏板操作。当运用驻车制动器时,驻车制动钢索机械地拉紧施加制动的秆件。 驻车制动器由机械控制,不是由液压控制。 每当以很强的压力进行制动时,车轮可能完全停止转动。这叫做“车轮抱死” 。这 并不能帮助车辆停下来,而是使轮胎损失些与路面的摩擦接触,在路面上滑移。轮胎 滑移时,车辆不再是处于控制下的停车,驾驶员处在危险之中。有经验的驾驶员知道, 防止车轮抱死的对策是迅速上、下踩动制动踏板。这样间歇地对制动器提供液压力,使 驾驶员在紧急制动时能控制住车辆。 现今许多新型车辆装备了防抱死制动系统(ABS)。防抱死制动系统做的工作与有经 验驾驶员做的相同,只是更快、更精确些。它感受到某车轮快要抱死或滑移时,迅速中 毕业论文(设计)用纸 - 5 - 断该车轮制动器去的制动压力。在车轮处的速度传感器监测车轮速度,并将信息传递给 车上计算机。于是,计算机控制防抱死制动装置,输送给即将抱死的车轮的液压力发生 脉动。 1.2 汽车制动器的工作原理汽车制动器的工作原理 一般制动系的工作原理可用下图所示的一种简单的液压制动系示意图来说明。个 以内圆面为工作表面的金属的制动鼓 8 固定在车轮轮毅上,随车轮一同旋转。在固定不 动的制动底板 11 上,有两个支承销 12,支承着两个弧形制动卸 10 的下端。制动蹄的外 圆面上又装有一般是非金属的摩擦片 9。制动底板上还装有液压制动轮缸 6,用油管 5 与装在车架上的液压制动主缸 4 相连通。主缸中的活塞 3 可由驾驶员通过制动踏板机构 来操纵。 制动系不工作时,制动鼓的内圆面与制动蹄摩擦片的外圆面之间保持有一定的间隙, 使车轮和制动鼓可以自由旋转。 要使行驶中的汽车减速,驾驶员应跺下制动踏板 l,通过推杆 2 和主缸活塞 3,使 主缸内的油液在一定压力下流人轮缸 6,并通过两个轮缸活塞 7 推使两制动蹄 10 绕支承 销 12 转动,上端向两边分开而以其摩擦片 9 压紧在制动鼓的内圆面上。这样,不旋转 的制动卸就对旋转着的制动鼓作用一个摩擦力矩 M,其方向与车轮旋转方向相反。制动 鼓将该力矩传到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的周 绕力 F,同时路面也对车轮作用一个向后的反作用力,即制动力 F。制动力 F 由车轮经 车桥和悬架传给车架及车身,迫使整个汽车减速。制动力愈大,汽车减速度也愈大。当 故开制动踏板时回位弹簧 13 即将制动蹄拉回原位,摩擦力矩 M 和制动力 F 消失,制 动作用即行终止。 毕业论文(设计)用纸 - 6 - 图图 1-2 鼓式制动器结构图鼓式制动器结构图 1.制动踏板 2.推杆 3.主缸活塞 4.制动主缸 5.油管 6.制动轮缸 7.轮缸活塞 8.制动鼓 9.摩擦片 10.制动蹄 11.制动底板 12.支承销 13.制动体回位弹簧 图中所示的制动器中,由制动鼓 8、摩擦片 9 和制动蹄 10 所构成的系统产生了一个 制动力矩(摩擦力矩 M)以阻碍车轮转动该系统称为制动器。 显然,阻碍汽车运动的制动力 F 不仅取决于制动力矩 M,还取决于轮胎与路面间的附着 条件。如果完全丧失附着,则这种制动系事实上不可能产生制动汽车的效果。不过,在 讨论制动系的结构问题时,一般都假定具备良好的附着条件。 1.3 毕业设计的目的和意义毕业设计的目的和意义 毕业设计和毕业论文是本科生培养方案中的重要环节。学生通过毕业设计,综合性 地运用几年内所学知识去分析、解决一个问题,在作毕业设计的过程中,所学知识得到 疏理和运用,它既是一次检阅,又是一次锻炼。不少学生在作完毕业设计后,感到自己 毕业论文(设计)用纸 - 7 - 的实践动手、动笔能力得到锻炼,增强了即将跨入社会去竞争,去创造的自信心。 通过大学四年的学习,从理论与实践上均有了一定程度的积累。毕业设计就是对我 们以往所学的知识的综合运用与进一步的巩固加深,并对解决实际问题的能力的训练与 检验。其目的在于: 1、培养正确的设计思想与工作作风。 2、进一步培养制图、绘图的能力。 3、学会分析与评价汽车及其各总成的结构与性能,合理选择结构方案及其有关参 数。 4、学会汽车一些主要零部件的设计与计算方法以及总体设计的一般方法,以毕业 后从事汽车技术工作打下良好的基础。 5、培养独立分析、解决问题的能力。 毕业论文(设计)用纸 - 8 - 第第 2 章章 制动器结构型式及选择制动器结构型式及选择 汽车的制动器设计究竟采用哪一种结构方案较为合理,能够最大限度的发挥制动器 的功用,首先应该从制动器设计的一般原则上谈起。 2.1 鼓式制动器的结构型式及选择鼓式制动器的结构型式及选择 图图 2-1 鼓式制动器鼓式制动器 l-调整楔 2-推杆 3-制动蹄 4-连接弹簧 5-上回位弹簧 6-弹簧座 7-手制动拉杆 8-下回位弹簧 9-车轮制动缸 l0-制动 底板 ll旋塞 12-制动摩擦片 l3-弹簧 鼓式制动器总成的主要零部件有:制动鼓和轮毅总成、制动蹄总成、制动底板、 液压轮缸、制动蹄回位弹簧压紧装置、调节机构和驻车制动机构。为制动车轮、制动 鼓和制动蹄提供摩擦表面,制动鼓的内圆周是一加工过的制动表面。车轮通过螺母和双 头螺栓安装到制动鼓轮毅上。该轮毂安放在允许车轮总成转动的车轮轴承上。 各种鼓式制动器的示意图如下: 毕业论文(设计)用纸 - 9 - 1、领从蹄式 2、双领蹄式 3、双向领从蹄式 4、双从蹄式 5、单向增力式 6、双向增力式 2.2 盘式制动器的结构型式及选择盘式制动器的结构型式及选择 盘式制动系统的基本零件是制动盘,轮毂和制动卡钳组件。制动盘为停止车轮的 转动提供摩擦表面。车轮通过双头螺栓和带突缘的螺母装到制动盘毂上。毂内有允许车 轮转动的轴承。制动盘的每一面有加工过的制动表面。 液压元件和摩擦元件装在制动卡钳组件内。制动卡钳装到车辆上时,它跨骑在制动 盘和轮毂的外径处。 进行制动时,靠主缸的液压力,制动卡钳内的活塞被迫外移。活塞压力通过摩擦块 或制动蹄夹住制动盘。由于施加在制动盘两侧的液压力是方向相反、大小相等的,制动 盘不会变形,除非制动过猛或持续加压。 制动盘表面的摩擦能生成热。由于制动盘在转动。表面没有遮盖,热很容易消散到 周围空气中。由于迅速冷却的特性,即使在连续地猛烈制动之后,盘式制动器比抗制动 衰退的鼓式制动器工作得要好。许多车辆的前部采用盘式制动器的主要理由就是它抗制 动衰退性好和停车平稳。 毕业论文(设计)用纸 - 10 - 图图 2-2 盘式制动器结构图盘式制动器结构图 1.制动卡钳组件 2.制动盘和毂组件 3.轮毂 4.双头螺栓 5.摩擦面 6.摩擦块 2.2.1 定钳盘式制动器定钳盘式制动器 毕业论文(设计)用纸 - 11 - 钳盘式制动器主要有以下几种结构型式: 图图 2-3 钳盘式制动器示意图钳盘式制动器示意图 a)、d) 固定钳式 b) 滑动钳式 c) 摆动钳式 固定钳式制动器,如图(a)所示,制动盘两侧均有油缸。制动时,仅两侧油缸中 的活塞驱使两侧制动块向盘面移动。这种制动器的主要优点是: (1)除活塞和制动块外无其它滑动件,易于保证钳的刚度; (2)结构及制造工艺与一般的制动轮缸相差不多,容易实现从鼓式到盘式的改型; (3)很能适应分路系统的要求; 就目前汽车发展趋势来看,随着汽车性能要求的提高,固定钳结构上的缺点也日益 明显。主要有以下几个方面: (1)固定钳式至少要有两个油缸分置于制动盘两侧,因而必须用跨越制动盘的内部 油道或外部油管(桥管)来连通,这就使制动器的径向和轴向的尺寸都比较大,因而在 毕业论文(设计)用纸 - 12 - 车轮中布置比较困难; (2)在严酷的使用条件下,固定钳容易使制动液温度过高而汽化,从而使制动器的 制动效能受到影响; (3)固定前盘式制动器为了要兼充驻车制动器,必须在主制动钳上另外附装一套供 驻车制动用的辅助制动钳,或者采用盘鼓结合式制动器,其中用于驻车制动的鼓式制动 器只能是双向增力式的,但这种双向增力式制动器的调整不方便。 2.2.2 浮钳盘式制动器浮钳盘式制动器 浮钳盘式制动器的制动钳一般设计成可以相对于制动盘轴向滑动。其中只在制动盘 的内侧设置油缸,而外侧的制动块则附装钳体。 浮动钳式制动器可分为滑动钳式(图 b)和摆动钳式(图 c) 。与固定钳式制动器相 比较,其优点主要有以下几个方面: (1).钳的外侧没有油缸,可以将制动器进一步移近轮毂。因此,在布置时较容易; (2).浮动钳没有跨越制动盘的油管或油道,减少了受热机会,且单侧油缸又位于盘 的内侧,受车轮遮蔽减少而冷却条件较好等原因,所以其制动液汽化可能性较小; (3).浮动钳的同一组制动块可兼用于行车和驻车制动; (4).采用浮动钳可将油缸和活塞等紧密件减去一半,造价大为降低。这一点对大批 量生产的汽车工业式十分重要的。 与定钳盘式制动器相反,浮钳盘式制动器的单侧油缸结构不需要跨越制动盘的油道, 故不仅轴向和径向尺寸较小,有可能布置得更接近车轮轮毂,而且制动液受热气化的机 会就少。 此外,浮钳盘式制动器在兼充行车和驻车制动器的情况下,不用加设驻车制动钳, 只须在行车制动钳的油缸附近加装一些用以推动油缸活塞的驻车制动机械传动零件即可。 2.2.3 全盘式制动器全盘式制动器 全盘式制动器摩擦副的固定元件和旋转元件都是圆盘形的,分别称为固定盘和旋 转涤 其结构原理与摩擦离合器相似。多片全盘式制动器的各盘都封闭在壳体中,散热 条件差。 毕业论文(设计)用纸 - 13 - 2.3 盘式和鼓式制动器比较盘式和鼓式制动器比较 与鼓式制动器相比较,盘式制动器有如下优点: 1、一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳定。 2、浸水后效能降低较少,而且只须经一两次制动即可恢复正常。 3、在输出制动力矩相同的情况下,尺寸和质量一般较小。 4、制动盘沿厚度方向的热膨胀量极小,不会像制动鼓的热膨胀那样使制动器间隙 明显增加而导致制动踏扳行程过大。 5、较易实现间隙自动调整,其他保养修理作业也较简便。 与鼓式制动器比较,盘式制动器有如下缺点: 1、效能较低,故用于液压制动系时所需制动促动管路压力较高,一班要用伺服装 置。 2、兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂,因而在 后轮的应用受到限制。 盘式制动器将逐步取代鼓式制动器,主要是由于盘式制动器和鼓式制动器的优缺点 决定的。 盘式制动器在液力助力下制动力大且稳定,在各种路面都有良好的制动表现,其制 动效能远高于鼓式制动器,而且空气直接通过盘式制动盘,故盘式制动器的散热性很好。 但是盘式制动器结构相对于鼓式制动器来说比较复杂,对制动钳、管路系统要求也较高, 而且造价高于鼓式制动器。 相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器 的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而且由于散热性不好, 鼓式制动器存在热衰退现象。当然,鼓式制动器也并非一无是处,它便宜,而且符合传 统设计。 我们知道,高速行驶的轿车,由于频繁使用制动,制动器的摩擦将会产生大量的热, 使制动器温度急剧上升,这些热如果不能很好地散出,就会大大影响制动性能,出现所 谓的制动效能热衰退现象,这可不是闹着玩的,制动器直接关乎生命。仅从这一点上, 您就应该理解为什么盘式制动器会逐步取代鼓式制动器了吧。目前,在中高级轿车上前 后轮都已经采用盘式制动器。 毕业论文(设计)用纸 - 14 - 不过,时下我们开的大部分轿车(如夏利、富康、捷达等),采用的还不完全是盘式 制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器), 这主要是出于成本上的考虑,同时也是因为汽车在紧急制动时,轴荷前移,对前轮制动 的要求比较大,一般来说前轮用了盘式制动器就够使了。当然,前后轮都使用盘式制动 器是趋势(如宝莱轿车) 。本次设计选择滑动钳盘式制动器。 毕业论文(设计)用纸 - 15 - 第第 3 章章 制动系的主要参数及其选择制动系的主要参数及其选择 3.1 制动力与制动力分配制动力与制动力分配 前、后制动器制动力分配关系将影响汽车的制动方向稳定性和附着条件的利用,是 汽车制动系设计时必须考虑的问题。一般根据前、后轴制动器制动力的分配、装载情况、 道路附着条件和坡度等因素,当制动器制动力足够时,汽车制动过程可能出现三种情况: 前后轮同时抱死拖滑;前轮先抱死拖滑,然后后轮抱死拖滑;后轮先抱死拖滑,然后前 轮抱死拖滑。 如前所述,前后轮同时抱死工况可避免后轴侧滑,并保证前轮只有在最大制动强度 下,才使汽车失去转向能力,这种工况道路附着条件利用较好。前轮较后轮先抱死,虽 然不会发生侧滑,但是汽车丧失转向能力。在一定速度下,后轮较前轮先抱死一定时间, 会造成汽车后轴侧滑。 3.1.1 制动时前、后轮的地面法向反作用力制动时前、后轮的地面法向反作用力 图图 3-13-1 制动时汽车受力情况制动时汽车受力情况 图 3-1 所示为,忽略汽车的滚动阻力偶和旋转质量减速时的惯性阻力偶矩,汽车在水平 路面上制动时的受力情况。因为制动时车速较低,空气阻力 w F 可忽略不计,则分别对 汽车前后轮接地点取矩,整理得前、后轮的地面法向反作用力为 毕业论文(设计)用纸 - 16 - )( )( 12 21 g h dt du L L mg F g h dt du L L mg F g z g z (3-1) 22 11 38 . 0 9 . 0 zgz zgz Fh L mg F Fh L mg F (3-2) 式中: 1z F 和 2z F 分别为前后轮因制动形成的动载荷。如果假设汽车前后轮同时抱死, 则汽车制动减速度 dt du j 为 b g dt du 或 dt du g b 1 (3-3) 式中: b 为附着系数。 将式(3-3)代入式(3-1),有 )( )( 12 21 bgz bgz hL L mg F hL L mg F (3-4) 由式(3-4)可知,制动时汽车前轮的地面法向反作用力 1z F 随制动强度和质心高度 增加而增大;后轮的地面法向反作用力 2z F 随制动强度和质心高度增加而减小。随大轴 距汽车前后轴的载荷变化量小于短轴距汽车载荷变化量。例如,某载货汽车满载在干燥 混凝土水平路面上以规定踏板力实施制动时, 1z F 为静载荷的 90, 2z F 为静载荷的 38,即前轴载荷增加 90,后轴载荷降低 38。 毕业论文(设计)用纸 - 17 - 3.1.2 前、后制动器制动力的理想分配曲线前、后制动器制动力的理想分配曲线 在汽车制动系设计时,如果在不同道路附着条件下制动均能保证前、后制动器同时 抱死,则此时的前、后制动器制动力 1 F 和 2 F 的关系曲线,被称为前、后制动器制动力 的理想分配曲线,通常简称为 I 曲线。 在任何附着吸尘的路面上前、后轮制动器同时抱死,则前、后制动器制动力必定等 于各自的附着力,且前、后制动器制动力(或地面制动力)之和等于附着力,即 22 11 21 z z FF FF mgFF (3-5) 将式(3-5)中的第二公式除以第三个公式,并将式(3-4)代入,有 g g z z hL hL F F F F mgFF 1 2 2 1 2 1 21 (3-6) 联立方程组(3-6),并消除变量后,将方程表示 )( 12 FfF 的形式,即得到前 后制动器制动力的理想分配关系式为 1 2 1 2 22 2 4 2 1 F h mgL F mg Lh L h mg F g g g (3-7) 毕业论文(设计)用纸 - 18 - 图图 3-23-2 I I 曲线示意图曲线示意图 图图 3-33-3 I I 曲线的一种制作方法曲线的一种制作方法 如已知汽车轴距L、质心高度 g h 、总质量m、质心的位置 2 L (质心至后轴的距离), 就可用式(3-7)绘制前、后制动器制动力的理想分配关系曲线,简称 I 曲线。图 3-2 就是根据式(3-7)绘制的汽车在空载和满载两种工况的 I 曲线。 根据方程组(3-6)的两个方程也可直接绘制 I 曲线。假设一组值 (0.1,0.2,0.3,1.0),每个值代入方程组(3-6),就具有一个交点的两条 直线,变化值,取得一组交点,连接这些交点就制成 I 曲线,见图 3-3。 I 曲线时踏板力增长到使前、后车轮制动器同时抱死时前、后制动器制动力的理想 分配曲线。前、后车轮同时抱死时, 111 FFF xb , 222 FFF xb ,所以 I 曲线也 是前、后车轮同时抱死时, 1 F 和 2 F 的关系曲线。 毕业论文(设计)用纸 - 19 - 3.2 具有固定比值的前、后制动器制动力与同步附着系数具有固定比值的前、后制动器制动力与同步附着系数 两轴汽车的前、后制动器制动力的比值一般为固定的常数。通常用前制动器制动力 对汽车总制动器制动力之比来表明分配比例,即制动器制动力分配系数 ,它可表示为 F F 1 (3-8) 因为 21 FFF ,所以 FF FF )1 ( 2 1 (3-9) 整理式(3-9)得 1 2 1 F F (3-10) 或表示为 )( 12 FfF ,即 12 1 FF (3-11) 式(3-10)为一线性方程。它是实际前、后制动器制动力实际分配线,简称为 线。 线通过坐标原点,其斜率为 1 tg 具有固定的 线与 I 线的交点处的附着系数 0 ,被称为同步附着系数。它表示具有 固定 线的汽车只能在一种路面上实现前、后轮同时抱死。同步附着系数时由汽车结构 参数决定的,它是反应汽车制动性能的一个参数。 同步附着系数说明,前后制动器制动力为固定比值的汽车,只能在一种路面上,即 在同步附着系数的路面上才能保证前后轮同时抱死。 同步附着系数也可用解析方法求出。设汽车在同步附着系数的路面上制动,此时汽 车前、后轮同时抱死,将式(3-6)代入式(3-10),得 毕业论文(设计)用纸 - 20 - 1 1 2 2 1 g g hL hL F F (3-12) 整理后,得出 g h LL 2 0 (3-13) 3.3 制动器的制动力矩制动器的制动力矩 假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制 动力矩为 M=2fFoR 式中, f为摩擦因数; Fo为单侧制动块对制动盘的压紧力;R为作用半径。 对于常见的具有扇形摩擦表面的衬块,若其径向宽度不很大,取R等于平 均半径 Rm,或有效半径 Re,在实际上已经足够精确。 图图3 3- -4 4 钳钳盘盘式式制制动动器器的的作作用用半半径径计计算算参参考考图图 如图3-4,平均半径为 Rm=(R1+R2)/2 式中, R1和R2为摩擦衬块扇形表面的内半径和外半径。 故有效半径为 Re=M/2fFo=2(R23-R13)/3(R22-R12) 可见,有效半径 Re即是扇形表面的面积中心至制动盘中心的距离。上式也可写 成 Re=4/31-R1R2/(R1+R2)2(R1+R2)/2=4/31-m/(1+m)2Rm 式中,m= R1/R2 毕业论文(设计)用纸 - 21 - 因为mRm,且m越小则两者差值越大。 应当指出,若 m过小,即扇形的径向宽度过大,衬块摩擦面上各不同半径处的滑 磨速度相差太远,磨损将不均匀,因而单位压力分布均匀这一假设条件不能成立, 则上述计算方法也就不适用。 m值一般不应小于 065。 制动盘工作面的加工精度应达到下述要求:平面度允差为0012mm,表面粗 糙度为Ra0.71.3m,两摩擦表面的平行度不应大于 005mm,制动盘的端面圆 跳动不应大于 003mm。通常制动盘采用摩擦性能良好的珠光体灰铸铁制造。为保 证有足够的强度和耐磨性能,其牌号不应低于HT250。 3.4 利用附着系数与制动效率利用附着系数与制动效率 汽车制动减速度 zg dt du ,其中z被称为制动强度。由前述可知,若汽车在具有同 步附着系数 0 的路面上制动,汽车的前、后轮将同时达到抱死的工况,此时的制动强度 0 z 。在其他路面上制动时,既不出现前轮抱死也不发生后轮抱死的制动强度必然小 于地面附着系数,即 0 z 。就是说,只有在 0 的路面上,地面的附着条件才能被 充分地利用。而在 0 的路面上,因出现前轮或后轮先抱死的现象,地面附着条件未 被很好地被利用。为了定量说明地面附着条件的利用程度,定义利用附着系数为 Fzi Fxbi i , 2 , 1i 设汽车前轮刚要抱死或前、后轮同时刚要抱死时,汽车产生的减速度 zg dt du (或表 示为 z dt du g 1 ),则由式(3-1)得前轮地面法向反作用力为 )( 21gz zhL L mg F (3-14) 前轮制动器制动力和地面制动力为 mgz dt du mFF xb 11 (3-15) 毕业论文(设计)用纸 - 22 - 将式(3-14)和式(3-15)代入式(3-13),则 )( 1 2 1 1 1 g z xb zhL L z F F (3-16) 同理可推导出后轮利用附着系数。 后轮刚要抱死时,后轮地面制动力和地面法向反作用力 mgz dt du mFF bx )1 ()1 ( 22 (3-17) )( 12gz zhL L mg F (3-18) 将式(3-17)和式(3-18)代入式(3-13),则 )( 1 )1 ( 1 2 2 2 g z xb zhL L z F F (3-19) 对于已知汽车总质量m、轴距L、质心位置 1 L 、 2 L 、 g h 等结构参数,则可绘制出 利用附着系数 i 与制动强度z的关系曲线图。 附着效率 i E 是制动强度z和利用附着系数 i 之比。 它是也用于描述地面附着条件的利用程度,并说明实际制动力分配的合理性。根据 附着效率的定义,有 g hL Lz E 11 2 1 (3-20) g hL Lz E 2 2 2 2 )1 ( (3-21) 式中; 1 E 和 2 E 分别时前轴和后轴的附着效率。 毕业论文(设计)用纸 - 23 - 第第 4 章章 制动器的设计计算制动器的设计计算 4.1 原始数据和技术参数原始数据和技术参数 装备质量 1310kg (G1=750;G2=560) 满载质量 1860Kg (G1=870;G2=990) 质心高度 空载时 616mm 满载时 580mm 轴距 2513mm 轮胎 195/65 R15 91V 图图 4-14-1 制动时的汽车受力图制动时的汽车受力图 4.2 参数选择以及数据计算参数选择以及数据计算 4.2.1 盘式制动器主要参数的确定盘式制动器主要参数的确定 制动盘直径 D 轮辋直径为 1524.5=367.5mm 取 367mm 制动盘直径为 70%79%轮辋直径 即:256.9289.93 取 270mm 制动盘厚度 h 选择通风式制动盘 h=25 摩擦衬块外半径 R2、内半径 R1 根据制动盘直径可确定摩擦衬块外径 R2=130 毕业论文(设计)用纸 - 24 - 考虑到 R2/ R11.5,可选取 R1=92mm,则 R2/ R1=1.411.5 4.2.2 摩擦块磨损均匀性验证摩擦块磨损均匀性验证 假设衬块的摩擦表面全部于制动盘接触,而且各处单位压力均匀,则制动器的制动 力矩为 RfFM2 f 为摩擦因素,F0为单侧制动块对制动盘的压紧力,R 作用半径 在实际的计算过程中,R 值我们取平均值 Rm就可以了,设衬块的与制动盘之间的单位压 力为 p,则在任意微元面积 RdRd 上的摩擦力对制动盘的中心的力矩为 fpR2dRd,而单 侧制动块加于制动盘的制动力矩应为: dRdfpR R R 2 2 1 M 单侧衬块加于制动盘的总摩擦力为: 2 1 R R fpRdRdfF 所以有效半径: mm RR RR fF M 113= )(3 )(2 = 2/ =R 2 1 2 2 3 1 3 2 e 平均半径为: mm RR Rm 5 . 112= 2 = 21 因为Re -Rm =0.5mm, Rm 和 Re 之间相差不大,所以可以得出摩擦衬块和制动盘之 间的单位压力分布均匀,摩擦块的磨损较为均匀。 4.2.3 紧急制动时前后轮法向反力及附着力距紧急制动时前后轮法向反力及附着力距 1. 空载情况 质心至前轴距离: mm m m Lak1075= 1930 870 2718= 2 质心至后轴距离: mm m m Lbk1438= 1930 1060 2718= 1 考虑到汽车的行驶安全,选取沥青路(湿)的附着系数,则紧急制动时前后轴法7 . 0 毕业论文(设计)用纸 - 25 - 向反力 Fz1,Fz2 及每轮附着力距 M1,M2分别为 mmNrFM mmNrFM Nha L G F Nhb L G F rz rz gkz gkz 439042=3677 . 03418 2 1 = 2 1 = 1209999=3677 . 09420 2 1 = 2 1 = 3418=)5807 . 01075( 2513 8 . 91310 =)(= 9420=)5807 . 01438( 2513 8 . 91310 =)(= 22 11 2 1 满载情况 质心到前轴的距离: mm m m Lam1337= 1860 990 2513= 0 2 质心到后轴的距离: mm m m Lbm1174= 1860 870 2513= 0 1 紧急制动时候的前后轴发向反力 Fz1,Fz2 以及每轮附着力矩 M1,M2分别为: mmNrFM mmNrFM Nha L G F Nhb L G F rzz rz gm m z gm m z 8439163677 . 06570 2 1 2 1. 011643 2 1 2 1 6570)6167 . 01337( 2513 8 . 91860 )( 11643)6167 . 01174( 2513 8 . 91860 )( 22 11 2 1 4.2.4 同步附着系数的确定同步附着系数的确定 同步附着系数的选取原则: 1、路面状况好,可以取大一点; 路面差,取小一些。 0 0 2、单胎,抗滑性能差,取大些;双胎,抗侧滑强取小一些。 0 0 3、车速高,取大些;车速低取小些。 0 0 毕业论文(设计)用纸 - 26 - 4、平原地区,取大些;山区取小些。 0 0 综上所述,选择此轻型汽车的=0.7 0 空载时制动力分配系数 74 . 0 2513 14386167 . 0 0 L bh kg k 满载时制动力分配系数 64 . 0 2513 11746167 . 0 0 L bh mg m 4.2.5 制动器的效率制动器的效率 钳盘式制动器效能因数 k=2,其中 取 0.4ff 因此: k=0.8 4.2.6 制动力矩以及盘的压力制动力矩以及盘的压力 假设摩擦盘完全接触,而且各处的压力分布均匀。那么盘式制动器制动力矩为: e RFfM 0 2 1 为了保证汽车有良好的制动稳定性,汽车前轮先抱死,后轮后抱死(满载时候)则汽车 的前轮制动器的产生的制动力矩等于前轮的附着力矩。即: mmNMM1495543 11 单侧制动块对盘的压力: N fR M F e 62.16543 1134 . 02 1495543 2 1 0 前轮制动器的制动力矩: mmNM hb ha M g g 42.933562.16543 6167 . 01174 6167 . 01337 12 0 0 毕业论文(设计)用纸 - 27 - 4.2.7 同步附着系数的验算同步附着系数的验算 已知: mmNM mmNMM 42.9335 1495543 2 11 制动力分配系数: 64 . 0 21 1 MM M m 那么同步附着系数 705 . 0 616 1174251364 . 0 0 g mm h bL 与设定值相吻合。 4.2.8 摩擦衬块的磨损特性的验算摩擦衬块的磨损特性的验算 轻型汽车的盘式制动器在下列的实验标准下其比能量耗散率应不大于 6 w/mm2 按照试验标准 v1=80km/h=22.2m/s,ma=1860kg ,m=0.64; ;s gj v t78 . 3 6 . 0 2 . 22 max 1 22 1 2 21 6622)( 360 mmRRA 其中:=90o 所以 e1= 5.64 6 w/mm2 故比能量耗散率较小,符合磨损要求。 毕业论文(设计)用纸 - 28 - 第第 5 章章 制动驱动机构的结构型式选择与设计计算制动驱动机构的结构型式选择与设计计算 5.1 制动驱动机构型式制动驱动机构型式 制动驱动机构将来自驾驶员或其它力源的力传给制动器,使之产生制动力矩。根 据制动力源的不同,制动驱动机构一般可分为简单制动、动力制动和伺服制动三大 类。 5.1.1 简简单单制制动动系系 简单制动单靠驾驶员施加的踏板力或手柄力作为制动力源,故亦称人力制动。 其中,又分为机械式和液压式两种。机械式完全靠杆系传力,由于其机械效率低, 传动比小,润滑点多,且难以保证前、后轴制动力的正确比例和左、右轮制动力的 均衡,所以在汽车的行车制动装置中已被淘汰。但因其结构简单,成本低,工作可 靠(故障少 ),还广泛地应用于中、小型汽车的驻车制动装置中。 液压式简单制动 (通常简称为液压制动 )用于行车制动装置。液压制动的优点 是:作用滞后时间较短 (0103s);工作压力高 (可达1020MPa),因而轮缸 尺寸小,可以安装在制动器内部,直接作为制动蹄的张开机构(或制动块的压紧机 构),而不需要制动臂等传动件,使之结构简单,质量小;机械效率较高(液压系 统有自润滑作用 )。液压制动的主要缺点是过度受热后,部分制动液汽化,在管路中 形成气泡,严重影响液压传输,使制动系效能降低,甚至完全失效。液压制动曾广 泛应用在轿车、轻型货车及一部分中型货车上。 5.1.2 动动力力制制动动系系 动力制动即利用发动机的动力转化而成,并表现为气压或液压形式的势能作为 汽车制动的全部力源。驾驶员施加于踏板或手柄上的力,仅用于回路中控制元件的 操纵。因此,简单制动中的踏板力和踏板行程之间的反比例关系,在动力制动中便 不复存在,从而可使踏板力较小,同时又有适当的踏板行程。 气压制动是应用最多的动力制动之一。其主要优点为操纵轻便、工作可靠、不 易出故障、维修保养方便;此外,其气源除供制动用外,还可以供其它装置使用。 毕业论文(设计)用纸 - 29 - 其主要缺点是必须有空气压缩机、贮气筒、制动阀等装置,使结构复杂、笨重、成 本高;管路中压力的建立和撤除都较慢,即作用滞后时间较长(0309s),因 而增加了空驶距离和停车距离,为此在制动阀到制动气室和贮气筒的距离过远的情 况下,有必要加设气动的第二级元件 继动阀(亦称加速阀 )以及快放阀;管路 工作压力低,一般为 0507MPa,因而制动气室的直径必须设计得大些,且只 能置于制动器外部,再通过杆件和凸轮或楔块驱动制动蹄,这就增加了簧下质量; 制动气室排气有很大噪声。气压制动在总质量 8t以上的货车和客车上得到广泛应用。 由于主、挂车的摘和挂都很方便,所以汽车列车也多用气压制动。 用气压系统作为普通的液压制动系统主缸的驱动力源而构成的气顶液制动,也 是动力制动。它兼有液压制动和气压制动的主要优点,因气压系统管路短,作用滞 后时间也较短。但因结构复杂、质量大、成本高,所以主要用在重型汽车上。 全液压动力制动,用发动机驱动液压泵产生的液压作为制动力源,有闭式 (常压式)与开式(常流式)两种。 开式(常流式)系统在不制动时,制动液在无负荷情况下由液压泵经制动阀到贮 液罐不断循环流动;而在制动时,则借阀的节流而产生所需的液压并传人轮缸。 闭式回路因平时总保持着高液压,对密封的要求较高,但对制动操纵的反应比 开

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论