




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AdS4 CP3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXivArXiv:0811.1566 :0811.1566 JaumeJaume GomisGomis, , LinusLinus WulffWulff and and D.S.D.S. S SQSQS0909, , DubnaDubna, 30 , 30 JulyJuly 2009 2009 ArXiv:0903.5407 ArXiv:0903.5407 P.A.GrassiP.A.Grassi, , L.WulffL.Wulff and D.S. and D.S. 1 1 AdS4/CFT3 correspondence uHolographic duality between 3d supersymmetric Chern-Simons-matter theories (BLG ; StefanskijStefanskij; ; DAuriaDAuria, , FrFr, Grassi D.S., Tkach & Volkov 1984) Geometrical groundGeometrical ground: : S S7 7 is the is the HopfHopf fibrationfibration over over CP CP 3 3 with with S S 1 1 fiber: fiber: S S7 7 vielbeinvielbein: : e em m a a = e e mm a a ( (y y) ) A Am m( (y y) ) 0 10 1 CPCP 3 3 vielbeinvielbein and and U U(1) connection (1) connection F F2 2 dA=JdA=JCP CP 3 3 (does not depend on (does not depend on S S1 1 fiber coordinate fiber coordinate z z) ) Our goal is to extend this structure toOur goal is to extend this structure to OSp(8|4)/SO(7)OSp(8|4)/SO(7) SO(1,3)SO(1,3) 1010 Hopf fibration of S7 as a coset space SU(4)SU(4) U(1)U(1) SU(3)SU(3) U(1)U(1) As a As a HopfHopf fibrationfibration, locally, , locally, S S 7 7 =CPCP 3 3 U(1) U(1) S S = = SO(8)SO(8) SO(7)SO(7) - symmetric space- symmetric space CPCP 3 3 = = SU(4)/SU(3)SU(4)/SU(3) U(1) symmetric spaceU(1) symmetric space SU(4)SU(4) U(1)U(1) SU(3)SU(3) U U d d (1)(1) SU(4)SU(4) U(1) U(1) SO(8) SO(8) CosetCoset representative and representative and CartanCartan forms: forms: K KS S7 7 (y,z)=K(y,z)=KCP CP 3 3 (y)(y) e ezT zT 1 1 =e e y y aa P Pa a e ezT zT 1 1 ( (T T1 1 is U(1) generator) is U(1) generator) K K -1-1 S S 7 7 dKdK S S 7 7 = = e ea a( (y y) ) P Pa a + + ( (y y) ) MMSU(3) SU(3)+A +A( (y y) ) T T 2 2 + + d dz z T T1 1 ( (T T 2 2 U U (1)(1) ) = = dydym m e e mm a a( (y y) ) P Pa a + +( (dzdz+ + dydym m A A mm ( (y y) ) P P 7 7 + ( + (d dz z - - A A( (y y) ) T Td d + + ( (y y) ) MMSU(3) SU(3) T Td d =1/2 (T=1/2 (T 1 1 -T-T 2 2 ) is U) is U d d (1) generator, (1) generator, P P 7 7 =1/2 (T1/2 (T 1 1 +T+T 2 2 ) translation along ) translation along S S1 1 fiber fiber 1111 Hopf fibration of OSp(8|4)/SO(7)SO(1,3) uK11,32 - D=11 superspace with the bosonic subspace AdS4 S7 and 32 fermionic directions K K 11,32 11,32 = M = M10,32 10,32 S S1 1 (locally) (locally) uM10,32 - D=10 superspace with the bosonic subspace AdS4 CP3 and 32 fermionic directions (it is not a coset space) MM10,32 10,32 is the superspace we are looking for is the superspace we are looking for! ! basebase fiber fiber 1212 1st step: Hopf fibration over K10,24 = OSp(6|4)/U(3)xSO(1,3) uK11,24 = K10,24 S1 (locally) AdS4 x S7 SOSO(1,3)(1,3) SUSU(3)(3) U U d d (1)(1) OSpOSp(6(6|4) |4) U U(1)(1) K K 11,24 11,24 = =OSp OSp(6(6|4)|4) U U(1) (1) OSpOSp(8(8|4)|4) K K 11,24 11,24 ( (x,yx,y, , , ,z z)=)= K K10,24 10,24 ( (x,y x,y, , ) ) e e zTzT 1 1 = = e ex xa aP Pa a e ey y aa P Pa a e e Q Q 2424 e e zTzT 1 1 K K -1-1dK dK = = E E a a ( (x,yx,y, , ) ) P P a a + + E Ea a( (x,y x,y, , ) ) P Pa a + + E E ( (x,yx,y, , ) ) Q Q +( +(dzdz+ + A A( (x,yx,y, , ) ) ) ) P P 7 7 + ( + (d dz z - - A A) ) T T d d + + ( (x,yx,y, , ) ) MMSU(3) SU(3) CartanCartan forms: forms: 1313 2nd step: adding 8 fermionic directions 8 K K 11,3211,32 ( (x,y x,y, , , ,z z, , ) ) =K=K11,24 11,24 ( (x,yx,y, , , ,z z) ) e e QQ8 8 = = K K10,24 10,24 ( (x,y x,y, , ) ) e e zTzT 1 1 e e QQ 8 8 QQ 8 8 are 8 are 8 susysusy generators which extend OSp(6|4) to OSp(8|4) generators which extend OSp(6|4) to OSp(8|4) OSp(6|4) OSp(6|4) superalgebrasuperalgebra: : QQ24 24, ,Q Q24 24= =MMSO SO(2,3)(2,3)+ +MMSU SU(4)(4) QQ 8 8 , ,QQ 8 8 =MMSO SO(2,3)(2,3)+ +T T 1 1 OSp(2|4) OSp(2|4) superalgebrasuperalgebra: : Extension to OSp(8|4)Extension to OSp(8|4): : QQ24 24, ,Q Q 8 8 =M=M ? ? SO SO(8)/(8)/SUSU(4)(4) U U(1)(1) CartanCartan forms of forms of OSpOSp(8|4)/(8|4)/SOSO(7)(7) SOSO(1,3):(1,3): K K -1-1dK dK = = E E a a ( (x,y,x,y, , , )+)+dzdz V V a a( ( ) ) P P a a + + E Ea a( (x,y x,y, , , , ) ) P Pa a + +dzdz ( ( )+ )+ A A( (x,yx,y, , , , ) ) P P 7 7 + E+ E24 24( (x,y, x,y, , , ) ) Q Q24 24 + E + E 8 8 ( (x,y,x,y, , , ) ) Q Q 8 8 + connection terms + connection terms 1414 3rd step: Lorentz rotation in AdS4 x S1 (fiber) tangent space K K -1-1dK dK = (= (E E a a ( (x,y,x,y, , , )+)+dzdz V V a a( ( ) ) ) P P a a + + E Ea a( (x,y x,y, , , , ) ) P Pa a +( +(dzdz ( ( )+ )+ A A( (x,yx,y, , , , ) ) ) ) P P 7 7 + E+ E24 24( (x,y, x,y, , , ) ) Q Q24 24 + E + E 8 8 ( (x,y,x,y, , , ) ) Q Q 8 8 + connection terms + connection terms E Ea a ( (x,yx,y, , , , ) ) = (= (E E b b ( (x,y,x,y, , , )+)+dzdz V V b b( ( ) ) ) b b a a ( ( ) ) + + ( (dzdz ( ( ) + ) + A A( (x,yx,y, , , , ) ) 7 7a a ( ( ) ) Lorentz transformation of the Lorentz transformation of the supervielbeinssupervielbeins: : S S1 1 : : dz dz ( ( ) )+ + A A ( (x,yx,y, , , , ) ) = ( (dzdz ( ( ) + ) + A A( (x,yx,y, , , , ) ) 7 77 7 ( ( ) ) + + ( (E E b b ( (x,yx,y, , , , ) + ) + dzdz V V b b( ( ) ) ) b b 7 7 ( ( ) ) E E aa( (x,y x,y, , , , ) ) = E E aa( (x,y x,y, , , , ) ) E E 2424( (x,y, x,y, , , ) ), , E E 8 8 ( (x,y,x,y, , , ) rotated 32 fermionic ) rotated 32 fermionic vielbeinsvielbeins MM10,32 10,32 P Pa a P P7 7 1515 Superstring action in AdS4 CP3 superspace g gij ij = =E E i i A A E E j j B B ABAB induced worldsheet metric induced worldsheet metric NS-NS field NS-NS field B B 2 2 is obtained by dimensional reduction of is obtained by dimensional reduction of A A 3 3 in D=11 in D=11 Kappa-symmetry gauge fixingKappa-symmetry gauge fixing ( (P.A.GrassiP.A.Grassi, , L.WulffL.Wulff and D.S. arXiv:0903.5407 and D.S. arXiv:0903.5407 ) ) (Killing spinor, (Killing spinor, supersolvablesupersolvable, or , or superconformalsuperconformal gauge, 1998) gauge, 1998) - parametrize 3d slice of AdS4 - “- “chiralitychirality” condition on the ” condition on the AdSAdS boundary boundary 1616 Guage fixed superstring action in AdS4 CP3 (upon a T-dualization), P.A.Grassi, L.Wulff and D.S. arXiv:0903.5407 =( ( 2424 , , 8 8 ),), =1/2(1+ 1/2(1+ 0 0 1 1 2 2 ) ) The action contains fermionic terms up to a quartic order onlyThe action contains fermionic terms up to a quartic order only AdS4 CP3 = = 0 0 1 1 2 2 3 3 1717 Conclusion uThe comple
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论