高中数学北师大版选修2-2第1章 拓展资料:演绎推理的三种类型_第1页
高中数学北师大版选修2-2第1章 拓展资料:演绎推理的三种类型_第2页
高中数学北师大版选修2-2第1章 拓展资料:演绎推理的三种类型_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

演绎推理的三种类型 “特殊性存在于一般性之中”这个哲学原理道出了演绎推理的实质;其实,我们学习的演绎推理实际上就是从一般性的原理出发,推出某个特殊情况下的结论显然,只要一般性原理正确,推理形式不出错误,那么由此产生的结论一定正确;这也正是我们证明数学结论、建立数学体系的重要的思维过程;具体到一个数学问题,我们使用演绎推理时,常常表现为下述三种类型,这里向你介绍,也许对你深入理解演绎推理会有所帮助一、显性三段论在证明过程中,可以较清楚的看出“大前提”、“小前提”、“结论”;结合演绎推理我们可以知道结果是正确的也是演绎推理最为简单的应用例1当a,b为正数时,求证:证明:因为一个实数的平方是非负数,而是一个实数的平方,所以是非负数,即所以,评析:在这个问题的证明中,三段论是很显然的;大前提:“一个实数的平方是非负数”,小前提:“是一个实数的平方”,结论:“是非负数”,从而产生最后结果;由于大前提是人所共知的真理,推理形式正确,因而,结论正确二、隐性三段论三段论在证明或推理过程中,不一定都是清晰的;特别是大前提,有一些是我们早已熟悉的定理、性质、定义,对这些内容很多时候在证明或推理的过程中可以直接利用,不需要再重新指出;因此,就会出现隐性三段论例2判断函数的奇偶性解:由于,且,故函数为奇函数评析:在这个推理过程中,好似未用到演绎推理的三段论,其实不然,只是大前提“若,则函数奇函数;若,则函数是偶函数”是大家熟悉的定义,推理过程中省略了这是三段论推理的又一表现形式三、复式三段论一个复杂问题的证明或推理,往往不是一次三段论就可以解决的,在证或推的过程中要多次使用三段论,从一个熟悉的大前提出发,产生一个结论;而这个结论又是下一步的大前提,依次递推下去,最终产生结论,这就是所谓的复式三段论可以看出我们现在遇到的证明或推理的过程,基本上都是复式三段论例3若数列的前项和为,求证:数列为等差数列分析:本题的论证共有三层,即三次使用三段论推理,请看:第一层,大前提“若是数列的前项和,则”;小前提“数列的前项和为,则”;结论“”;第二层,大前提“对于非零数列,则有”;小前提“满足的数列有”;结论“”;第三层,大前提“对于数列,若常数,则是等差数列”;小前提“由,得为常数”;结论“数列为等差数列”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论