基于kl展开式的特征提取_第1页
基于kl展开式的特征提取_第2页
基于kl展开式的特征提取_第3页
基于kl展开式的特征提取_第4页
基于kl展开式的特征提取_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模式识别 第九章特征的选择与提取 回顾: n两类提取有效信息、压缩特征空间的方法: q特征提取 (extraction):用映射(或变换)的方法把 原始特征变换为较少的新特征 q特征选择(selection) :从原始特征中挑选出一些最 有代表性,分类性能最好的特征 n常见类别可分离性判据: 基于距离的可分性判据 基于概率密度分布的判据 9.3 基于KL展开式的特征提取 nK-L变换,是一种常用的正交变换正交变换,K-L变换 常用来作为数据压缩数据压缩,这里我们用它作降维降维。 n学习这一节主要要掌握以下几个问题: n1什么是正交变换; n2K-L变换是一种最佳的正交变换,要弄清是什 么意义的最佳,也就是说它最佳的定义; n3K-L变换的性质; n4K-L变换的重要应用。 9.3 基于KL展开式的特征提取 n n 正交变换概念正交变换概念 q变换是一种工具,它的用途归根结底是用来描述事物, 特别是描述信号用的。例如我们看到一个复杂的时序信 号,希望能够对它进行描述。描述事物的基本方法之一 是将复杂的事物化成简单事物的组合, 或对其进行分解, 分析其组成的成分。 q例如对一波形,我们希望知道它是快速变化的(高频), 还是缓慢变化的(低频),或是一成不变的(常量)。如果它 既有快速变化的成分,又有缓慢变化的成分,又有常量 部分,那么我们往往希望将它的成分析取出来。这时我 们就要用到变换。变换。 9.3 基于KL展开式的特征提取 n n 正交变换概念正交变换概念 q变换的实质是一套度量用的工具实质是一套度量用的工具,例如用大尺子度 量大的东西,用小尺子度量小的东西,在信号处理 中用高频,低频或常量来衡量一个信号中的各种不 同成分。对某一套完整的工具就称为某种变换。 q如傅里叶变换傅里叶变换就是用一套随时间正弦、余弦变化的 信号作为度量工具,这些正弦,余弦信号的频率是 各不相同的,才能度量出信号中相应的不同频率成 分。 9.3 基于KL展开式的特征提取 图6-1 图6-2a 图6-2b q例如,图6-1中的信号只有一个单一频率的简谐信号,而 图6-2(a)中信号就不是一个简谐信号所描述的,它起码可 以分解成图6-2中的两个成分,一是基波,另一是三次谐波 。 9.3 基于KL展开式的特征提取 图6-3(b)中的向量A与B在一个二维空间定义,它们两者分别含有成 分为(a1,a2)与(b1,b2),a1与b1是两者的同一种成分,a2与b2则是 另一种成分。故它们的点积定义为a1b1+a2b2,在这种条件下就不 需要积分,而只是简单求和。简单求和。 图6-3b 9.3 基于KL展开式的特征提取 点积运算的结果是一个数值,或大于零,小于零或等于零 等于零的情况在图6-3(b)中出现在A与B之间夹角为90的 情况,这表明B中没有A的成分,A中也没有B的成分,因 此又称相互正交相互正交。 由此我们知道作为一种变换,如果这种变换中的每一种成分 与其它成分都正交时,它们之间的关系就相互独立了,每一 种成分的作用是其它成分所不能代替的。拿傅里叶变换来说 ,频率为f的成分只能靠变换频率为f的成分去析取。 另一方面也说明了这套变换必须是完备的,也就是它必须包含 一切必要的成分,例如必须有基波的任何一次整数倍频率的谐 波,否则就会对信号分析不全面。 9.3 基于KL展开式的特征提取 上式中要求uiTuj=1,是考虑到ui是作为度量事物的单位应 用的,它本身的模应该为1,ui又称为某一个基某一个基。而被分解后 的任何事物(在此指信号)可等成各种成分之和。故任一信号X 可表示成: 其中ci是相应基ui的相应成分。 综合以上分析,我们可以将对这种变换的定义总结为: 如果将这种变换中的每一成分,用一个向量ui表示,i是其 下标,原理上可以到,则我们要求的正交变换可表示成: 9.3 基于KL展开式的特征提取 n基于Karhunen-Loeve变换的特征提取方法是以在特以在特 征空间分布的样本特征向量为原始数据,通过实行征空间分布的样本特征向量为原始数据,通过实行K-K- L L变换,找到维数较少的组合特征,达到降维的目的变换,找到维数较少的组合特征,达到降维的目的 。由于样本的描述都是离散的向量,因此我们只讨论 K-L变换的离散情况。 nK-L变换:对给定一个D维训练样本集(原始特征空 间),进行特征空间的降维,降到d维,d2,故最优2x1特征提取器 此时的K-L变换式为: 基于KL变换的数据压缩举例 给出样本数据如下: 试用K-L变换作一维数据压缩。 思路思路:1)求总体均值向量;2)求产生矩阵 ; 3)求产生矩阵的特征值i 及特征向量 ; 4)按i排序,确定变换矩阵W; 5)利用 求新的一维样本。 KL变换的一些典型应用 上面我们从数学的角度分析了K-L变换的 性质。归结起来,它消除了各分量之间的它消除了各分量之间的 相关性,因而用它来描述事物时,可以减相关性,因而用它来描述事物时,可以减 少描述量的冗余性,做到用最经济有效的少描述量的冗余性,做到用最经济有效的 方法描述事物方法描述事物。下面结合一些应用实例来 说明如何运用K-L变换的这一性质。 KL变换的一些典型应用 以人脸图象这个例子看,K-L变换的降维效果是十分明显的。 对一幅人脸图象,如果它由M行与N列象素组成,则原始的特 征空间维数就应为MN。而如果在K-L变换以后只用到30个 基,那么维数就降至30,由此可见降维的效果是极其明显的 。 另一方面降维与数据压缩又是紧密联系在一起的。譬如原训 练样本集的数量为V,而现采用30个基,每个基实质上是一幅 图象,再加上每幅图像的描述参数,数据量是大大降低,尤 其是图象数很大时,压缩量是十分明显的。 1降维与压缩 KL变换的一些典型应用 使用K-L变换不仅仅起到降维与压缩数据的作用,更重要的 是每个描述量都有明确的意义,因而改变某一个参数就可让 图象按所需要的方向变化。在没有使用K-L变换的原数据集 中对图象的描述量是每个象素的灰度值,而孤立地改变某个 象素的灰度值是没有意义的。 而在使用K-L变换后,每个描述量都有其各自的作用。因此 通过改变这些参数的值就可实现对模型的有效描述,这在 图象生成中是很有用的。因此利用K-L变换构造出可控制的 ,连续可调的参数模型,这在人脸识别与人脸图象重构采 方面的应用是十分有效的。 2构造参数模型 KL变换的一些典型应用 图像重构 KL变换的一些典型应用 利用利用K-LK-L变换进行人脸图象识别变换进行人脸图象识别是一个著名的方法。其原理: 首先搜集要识别的人的人脸图象,建立人脸图象库; 利用K-L变换确定相应的人脸基图象基图象, 再反过来用这些基图象对人脸图象库中的人脸图象进行K-L 变换,从而得到每幅图象的参数向量,并将每幅图的参数向量 存起来。 在识别时,先对一张所输入的脸图象进行必要的规范化,再 进行K-L变换分析,得到其参数向量。 将这个参数向量与库中每幅图的参数向量进行比较,找到最 相似的参数向量,也就等于找到最相似的人脸,从而认为所输 入的人脸图象就是库内该人的一张人脸, 完成了识别过程。 3人脸识别 KL变换的一些典型应用 4人脸图象合成 用K-L变换构造参数模型的另一种典型用途是人 脸图象合成。从下面的例子中可以看出,有目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论