




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
问题 1:大球中有5个小球,如何证明它们都是 绿色的? 问题 2: 完全归纳 法 不完全归 纳法 问题3:某人看到树上乌鸦是黑的,深 有感触地说全世界的乌鸦都是黑的。 问题情境一 费马(Fermat) 曾经提出一个猜想: 形如Fn22 n+1(n=0,1,2)的数都是质数 100年后 问题情境二 :由一系列有限的特殊事例得出 一般结论的推理方法 结论一定可靠结论不一定可靠 考察全体对象, 得到一般结论 的推理方法 考察部分对象,得 到一般结论的推 理方法 归纳法分为完全归纳法 和 不完全归纳法 归纳法 多米诺骨牌课件演示 (2)验证前一问题与后一问题 有递推关系; (相当于前牌推倒后牌) 如何解决不完全归纳法存在的问题呢 ? 如何保证骨牌一一倒下?需要几个步骤才 能做到? (1)处理第一个问题;(相当于 推倒第一块骨牌) 问题情境三 对于由不完全归纳法得到的某些与自然数有关自 然数的数学命题我们常采用下面的方法来证明它们 的正确性: (1)证明当n取第一个值n0(例如n0=1) 时命题 成立;【归纳奠基】 (2)假设当n=k(kN* ,k n0)时命题成立 证明当n=k+1时命题也成立. 这种证明方法叫做 数学归纳法 数学归纳法 【归纳递推】 框图表示 例1.用数学归纳法证明 1.用数学归纳法证明等式 1+2+3+(2n+1)=(n+1)(2n+1)时, 当n1时,左边所得项是 ; 当n2时,左边所得项是 ; 1+2+3 1+2+3+4+5 A、1B、1+aC、1+a+a2D、1+a+a2+a3 C 课堂练习: 3.用数学归纳法证明:如果an是一个等差数列, 则an=a1+(n-1)d对于一切nN*都成立。 证明: (1)当n=1时,左边=a1,右边=a1 +(1-1)d=a1, 当n=1时,结论成立 (2)假设当n=k时结论成立, 即 ak=a1+(k-1)d 则当n=k+1时 a k+1 = ak+d = a1+(k-1)d+d = a1+(k+1)-1d 当n=k+1时,结论也成立。 由(1)和(2)知,等式对于任何nN*都成立。 凑假 设 结论 从n=k到 n=k+1有什 么变化 4.用数学归纳法证明1+3+5+(2n1)=n2 证明: (1) 当n=1时 左1,右121 n=1时,等式成立 (2) 假设n=k时,等式成立,即1+3+5+(2k1)=k2 那么,当n=k+1时 左1+3+5+(2k1)2(k+1)-1 =k2+2k+1 =(k+1)2=右 即n=k+1时命题成立 由(1)、(2)可知等式对任何nN*都成立 递推基础 递推依据 1.数学归纳法是一种证明与正整数有关的数 学命题的重要方法.主要有两个步骤一个结论: 【归纳奠基】 (1)证明当n取第一个值n0(如 n0=1或2等)时 结论正确 (2)假设n=k时结论正确,证明n=k+1时结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 首钢工学院《化工原理(2)》2023-2024学年第二学期期末试卷
- 沈阳工业大学工程学院《论文写作指导》2023-2024学年第二学期期末试卷
- 重庆交通职业学院《水工程经济学》2023-2024学年第二学期期末试卷
- 许昌职业技术学院《建筑设计与构造(1)》2023-2024学年第二学期期末试卷
- 南昌工程学院《计算机软件技术》2023-2024学年第二学期期末试卷
- 湖南冶金职业技术学院《信息学奥赛基础》2023-2024学年第二学期期末试卷
- 2024年水上加油船项目资金筹措计划书代可行性研究报告
- 2024年医用二氧化碳系统项目投资申请报告代可行性研究报告
- 2025年安徽合肥巢湖市公共交通有限公司招聘笔试参考题库附带答案详解
- 2025年广西贵港市振林拍卖咨询有限公司招聘笔试参考题库附带答案详解
- 建筑企业财务管理的风险控制与应对策略
- 抗生素合理使用研究试题及答案
- 批评不可怕课件
- 智能建造基础考试题及答案
- 通信工程项目管理流程
- 《智能优化算法解析》 课件 第1-3章-绪论、基于进化规律的智能优化算法、基于物理原理的智能优化算法
- 具身智能项目建议书(参考)
- AI系列培训课件-人工智能技术及应用课件第1章
- 云南省昆明市盘龙区2024-2025学年八年级上学期期末质量监测英语试题(含答案)
- XX市路灯照明工程项目可行性研究报告
- 《水果品质鉴定》课件
评论
0/150
提交评论