拖拉机倒档拨叉叉口侧面精铣夹具设计(全套含CAD图纸)
收藏
资源目录
压缩包内文档预览:(预览前20页/共40页)
编号:1340543
类型:共享资源
大小:9.20MB
格式:ZIP
上传时间:2017-07-02
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
拖拉机
倒档拨
叉叉
侧面
夹具
设计
全套
cad
图纸
- 资源描述:
-











- 内容简介:
-
夹具夹紧力的优化及对工件定位精度的影响 什伍德拉夫机械工程学院,佐治亚理工学院,格鲁吉亚,美国研究所 由于 夹紧和加工 , 在工件和夹具的 接触部位会产生局部弹性变形, 使工件尺寸发生变化, 进而影响工件的最终加工质量。这种效应可通过最小化夹具 设计 优化 , 夹紧力 是一个重要的设计变量,可以得到优化,以减少工件的位移 。本文提出了一种确定多夹紧夹具受到准静态加工部 位 的最佳夹紧 力的新方法。该方法采用弹性接触力学模型代表夹具与工件接触,并涉及制定和解决方案的多目标优化模型的 约束。夹紧 力的 最优化对工件定位精度的影响通过 3铣夹具的例子进行了分析。 关键词:弹性 接触 模型 夹具 夹紧力 优化 前言 定位和 夹紧 的工件加工中的两个关键因素。 要实现夹具的这些功能,需将工件定位到一个合适的基准上 并夹紧,采用的夹紧力必须足够大,以抑制工件在加工过程中产生的移动 。然而,过度的夹紧力可诱导工件产生更大的弹性变形 ,这会影响它的位置精度,并反过来影响零件质量。 所以有必要确定最佳夹紧力,来减小 由于弹性变形对工件的定位误差 ,同时满足 加工的要求。在夹 具分析和综合领域上的研究人员使用了有限元模型的方法或 刚体模型的方法。大量的工作都以有限元方法为基础被报道 参考文献 1随着得墨忒耳 8,这种方法 的限制是 需要 较大的模型和计算成本。 同时 , 多数的 有限元 基础 研究人员一直 重点 关注的夹具布局优化和夹紧力的优化还没有得到充分讨论, 也有少数的研究人员通过对刚性模型 9夹紧力进行了优化, 刚型模型几乎被近似为一个规则完整的形状。 得墨忒耳 12, 13用螺钉理论解决的最低夹紧力,总的问题是制 定一个线性规划,其目的是尽量减少在每个定位点调整夹紧力强度的法线接触力。接触摩擦力的影响被忽视,因为它较法线 接触力 相对较小 , 由于这种方法是基于刚体假设, 独特的三维夹具可以处理超过 6 个自由度的装夹,复和倪 14也提出迭代搜索方法 ,通过假设已知摩擦力的方向 来 推导 计算最 小 夹紧力 ,该刚体分析的主要限制因素是当出现六个以上的接触力是使其静力不确定, 因此,这种方法无法确定工件移 位 的唯一性。 第 1 页 共 15 页 这种限制可以通过计算夹具 工件系统 15的弹性来克服,对于一个相对严格的工件,该夹具在机械加工工件的位置 会受夹具点的局部弹性变形的 强烈影响。 得墨忒耳 16使用经验的接触力变形的关系(称为元功能),解决 由于夹紧和 准静态加工力 工件刚体位移。同一作者还考察了加工工件夹具位移对设计参数的影响 17。桂 18 等 通过工件的夹紧力的优化定位精度弹性接触模型对报告做了改善,然而,他们没有处理计算夹具与工件的接触刚度的方法,此外,其算法 的应用没有讨论机械加工刀具路径负载有限序列。李和 19和乌尔塔多和 20用接触力学解决由于在加载夹具夹紧点弹性变形产生的接触力和工件的位移,他们还 使用此方法 制定了优化方法夹具布局 21和 夹紧力 22。 但是,关于 统及其对工件精度影 响的夹紧力的优化并没有在这些文件中提到 。 本文提出了一种新的算法,确定了 具工件系统受到准静态加载的最佳 夹紧力为基础的弹性方法。 该法旨在尽量减少影响由于工件夹紧位移 和加工荷载通过系统优化 夹紧 力的一部分定位精度。 接触力学模型,用于确定接触力和位移,然后再用做夹紧力优化 ,这个问题被作为多目标约束优化问题提出和解决。 通过两个 例子 分析 工件夹紧力的优化 对 定位精度的影响, 例子涉及的铣削夹具 3局 。 1 夹具 工件联系模型 1 1 模型假设 该加工夹具 由 L 定位器 和 带有 球形 端的 c 形 夹 组 成 。 工件和夹具 接触的地方是线性的 弹性 接触, 其他地方完全 刚性 。 工件 夹具系统由 于夹紧和加工受到准静态负载。夹紧力可假定为在加工过程中保持不变, 这个假设是有效的 ,在对液压或气动夹具使用。 在实际 中,夹具工件接触区域是弹性 分布, 然而, 这种模式的发展, 假设 总 触刚度(见图 1) 第 i 夹具 接触力 局部变形如下: i i ij j jF k d(1) 其中 j=x, y, z)表示,在当地子坐标系切线和法线方向的接触刚度 第 2 页 共 15 页 图 1 弹簧夹具 工件接触模型。 i i 接触处的坐标系 j=x, y, z)是对应沿着 别 ( j= x, y, z)的代表 , 1 2 工件 夹具的接触刚度模型 集中遵守 一个球形尖端定位 , 夹具和工件的接触并 不是线性的, 因为接触半径 与随法线力呈 非线性变化 23。 由于 法线 力 触变形 作用于 半径 平面工件表面之间,这可从封闭 赫兹的办法解决缩进一个球体弹性半空间 的 问题 。对于这个问题, 法线 的变形 , 在 文献 23 第 93 页 中 给出如下: 1 / 32291 6 *( 2) 其中 22*111 E 式中 和 工件和夹具的弹性模量, w 、 f分别是工件和材料的泊松比。 切向变形 或 者沿着硅业切力距 或 者有以下形式 文献 23 第 217 页 8i wi f G ( 3) 其中 1 / 31314i fG、一个合理的接触刚度的线性可以近似 从最小二乘获得适合式 ( 2), 这就产生了以下线性化接触刚度值:在计算上述的线性近似, 第 3 页 共 15 页 1 / 32*168 . 8 29( 4) 1*2 24 ji i y k G (5) 正常的力 被假定为从 0到 1000N,且最小二乘拟合相应的 2 夹紧 力优化 我们的目标是确定最优 夹紧 力,将尽量减少 由于工件刚体运动过程中,局部的夹紧和加工负荷引起的弹性变 形,同时保持在准静态加工过程中夹具 工件系统平衡,工件的位移 减少,从而减少定位误差。实现这个目标是通过制定一个多目标约束优化问题的问题,如下描述。 标函数配方 工件旋转 , 由 于 部 队 轮 换 往 往 是 相 当 小 17 的 工 件 定 位 误 差Tw w w Y Z 假设为确定其刚体翻译基本上 ,其中 、 、 和 是 沿 xg,图 2)。 图 2 工件刚体平移和旋转 工件的定位误差归于装夹力,然后可以在该刚体位移的2 第 4 页 共 15 页 2 2 2ww w Y Z ( 6) 其中 表示一个向量二级标准。 但是作用在工件的夹紧力会影响定位误差。 当多个夹紧力作用于工件,由此产生的夹紧力为 R Y P P ,有如下形式: P ( 7) 其中夹紧力 1 . P 是矢量, 夹紧力的方向 1 . L CR n n矩阵, c o s c o s c o s TL i L i L i L 是 夹紧力是矢量的方向余弦, 、 和 是第 i 个夹紧点夹紧力 在gX、向量角度 ( i=1、 2、 3.,C) 。 在这个文件 中,由于接触区变形造成的工件的定位误差,被假定为受的作用力是法线 的,接触的摩擦力相对较小,并在进行分析时忽略了加紧力对工件的定位误差的影响。 意指正常接触刚度比是 通过i( i=1, 2 L)和 最小的所有定位器正常 刚度并假设工件xN、yN、gY、自的 等效接触刚度 可有下式1 1 1,X Y Ns s sz i z i z ii i ik k k 和计算得出(见 图3),工件刚体运动 ,归于夹紧行动现在可以写成: 111X Y Y i z i z (8) 工件有位移,因此,定位误差的减小可以通过 尽量减少 产生的夹紧力 向量 2因此,第一个目标函数可以写为: 最小化 X Y Y N + + ( 9) 要注意,加权因素是与等效 接触刚度成正比的在gX、通 第 5 页 共 15 页 过使用最低总能量互补 参考文献 15, 23的原则求解弹性力学接触问题得出 A 的组成部分是唯一确定的,这保证了夹紧 力和相应的定位反应是“真正的”解决方案,对接触问题和产生 的“真正”刚体位移, 而且工件保持在静态平衡,通过夹紧力的随时调整。因此,总能量最小化的形式为补充的夹紧力优化的第二个目标函数,并给出: 最小化 2 2 2i i C L + C L + 1 1 1F F =2 k k i ii i ix y z 12 ( 10) 其中 *U 代表机构的弹性变形应变能互补, *W 代表由外部力量和力矩配合完成, Q 1 1 1. L C L C L Cx y z x y zc c c c c c是 遵 守 对 角 矩 阵 的 , 1和111 . L C L Cx y z x y F F F F 是所有接触力的载体。如图 3 擦和静态平衡约束 在( 10)式优化的目标受到一定的限制和约束, 他们中最重要的是在每个接触处的 静摩擦力约束。 库仑摩擦力的法律规定 22i i i ix y s F( 静态摩擦系数) ,这方面的一个非线性约束 和线性化版本可以使用,并且 19有: i i i ix y s F ( 11) 假设准静态载 荷 ,工件的静力平衡由下列力和力矩平衡方程确保 (向量形式): 内蒙古科技大学 本科生毕业设计(外文翻译) 第 6 页 共 15 页 0F 0M (12) 其中包括 在法线和切线方向的力和力矩的机械加工力 和工件重量。 接触力 由于夹具 工件接触是单侧面的,法 线的接触力 能被压缩。 这通过以下的 约束表 0( i=1, 2 ,L+C) ( 13) 它假设 在 工件 上的法线力 是 确定的,此外,在一个法线的接触压 力不能超过压 工件材料的 屈服强度( 。 这个约束可写为: i A ( i=1, 2, ,L+C) (14) 如果i 个工件 夹具的接触处的接触面积,完整的夹紧力优化模型,可以写成: 最小化 1212 (15) 3 模型 算法求解 式 ( 15) 多目标优化问题 可以通过 求解约束 24。 这种方法将确定的目标作为首要职能之一,并将其转换成一个约束对 。 该补充(1f)的主要目的是处理功能,并由此得到夹紧 力(2f)作为约束 的加权范数2对1保选中一套独特可行的夹紧力 , 因此,工件 夹具系统驱动到一个稳定的状态(即最低能量状态),此状态也表示有最小的夹紧力下的加权范数2L。2个指定的加权范数2 , 其中 是 2假设 最初所有夹紧力不明确,要确定一个合适的 。在定位和夹紧点的接触力的计算只考虑第一个目标函数(即1f)。虽 然有这样的接触力,并不一定产生最低的夹紧力, 这是一个“真正的”可行的解决弹性力学问题办法,可完全抑制工件在夹具中的位置。这些夹紧力的加权 系数2L, 通过计算并作为 初始值 与 比较 ,因此,夹紧力式( 15)的优化问题可改写为 : 内蒙古科技大学 本科生毕业设计(外文翻译) 第 7 页 共 15 页 最小化1 12 ( 16) 由: RC (11)(14) 得。 类似的算法寻找一个方程根的二分法来确定最低的 RC 通过尽可能降低 上限,由此产生的最小夹紧力的加权范数2L。 迭代次数 K,终止搜索取决于所需的预测精度 和 ,有 参考文献 15: y i i ix y i id d d Y Z 2K lo g ( 17) 其中 表示上限的功能,完整的算法在如图 4 中给出。 内蒙古科技大学 本科生毕业设计(外文翻译) 第 8 页 共 15 页 图 4 夹紧力的优化算法(在示例 1 中使用)。 图 5 该算法在示例 2 使用4 加工过程中的 夹紧力的优化 及 测定 上一节介绍的算法可用于确定 单负载作用于工件的载体的 最佳夹紧 力 , 然而,刀具路径随磨削量和切割点的不断变 化而变化。因此,相应 的夹紧力和最佳的加工负荷获得将 由图 4 算法获得 , 这大大增加了 计算负担,并要求为选择的夹紧 力提供标准, 将获得满意和适宜的整个刀具轨迹 ,用保守的办法来解决 下面将被讨论的问题,考虑一个有限的数目(例如 m)沿相应的刀 具 路径 设置的 产生m 个最佳夹紧 力 , 选择记为 123每个采样点, 考虑 以下四个最坏加工负荷向量: 内蒙古科技大学 本科生毕业设计(外文翻译) 第 9 页 共 15 页 m a x 1 1m a x Y F F 2 m a x 2m a x Y F F 3 3 m a xm a x Y F F 444m a x Y F F (18) gX、大 值 , 2, 3 分别代替对应的 且有: 2 2 2m a x m a Y F F 虽然 4 个 最坏情况加工负荷向量不会 在 工件 加工的 同一时刻出现 , 但 在每 次常规的进给速度中 ,刀具旋转一次出现一次,负载向量引入的 误 差可忽略 。 因此,在这项工作中,四个载体负载适用于同一 位置, (但不是同时)对工件 进行 的采样 , 夹紧力的优化算法 图 4,对应于每个采样点 计算最佳的夹紧力。夹紧力的最佳形式有: m a x 1 2 . Ti i i ij j j c C C (i=1,2, ,m) (j=x,y z,r) (19) 其中体, =1, 2, C)是每个相应的夹具在第 i 个样本点和第 j 负荷情况下力的大小。后 的结果, 一套 简单的 “最佳”夹紧力必须从所有的样本点和装载条件里发现,并在 所有的最佳夹紧力中选择。 这是通过 在所有负载情况和采样点 排序,并选择夹紧点的最高值的最佳的 夹紧 力 , 式 ( 20): ik ( k=1, 2, , C) ( 20) 只要这些具备,就得到一套 优化的夹紧力 Tm a x m a x m a C. C C , 验证这些力,以确保工件夹具系统的静态平衡。否则, 会出现 更多采样点和重复上述程序。 在这种方式中,可为整个刀具路径确定“最佳”夹紧力 5 总结了刚才所描述的算法。请 注意,虽然这种方法是保守的,它提供了一个确定的夹紧力,最大限度地减少工件的定位误差的一套系统方法。 5影响工件的定位精度 它 的兴趣在于 最 早 提出了 评价夹紧力的 算法 对工件的定位精度 的影响 。 工件首先放在与夹具 接触 的 基板上,然后 夹紧力使 工件 接触 到 夹具, 因此,局部变形发生在每个工件夹具接触处,使工件在夹具上移位和旋转。随后,准静态加工负内蒙古科技大学 本科生毕业设计(外文翻译) 第 10 页 共 15 页 荷应用造成工件在夹具的移位。 工 件刚体运动的定义是由它 在gX、 移位 Td w w w Z 和自转 y z (见图 2), 如前所述,工件刚体位移产生于在每个夹紧处的局部变形 Ti i i ix y zd d d d ,假设 Ti i i Y Z 为相对于工件的质量中心的第 i 个位置矢量 定位点, 坐标变换定理可 以 用 来 表 达 在 工 件 的 位 移 d w w w Z 以 及 工 件 自 转x y z 如下 : 1d Ti w wi i r d r (21) 其中 1描述当地在第 是一个旋转矩阵确定工件 相对于全球的坐标系 的定位 坐标系。 假设夹具夹紧工件旋转,由于旋转 w 很小,故 也可近似为: w ( 22) 方程( 21)现在可以改写为: 1 B q( 23) 其中 0 0 1 0 Z 0 1 Y X 0是 经方程 ( 21) 重新编排后 变换得到 的 矩阵式, Z Tw w w w w 是夹紧和加工导致的工件刚体运动矢量 。 工件与夹具单方面接触性质意味着工件与夹具接触处没有拉力的可能。因此,在第i 装夹点接触力 能与 关系如下: ,00,i i d t h e r w i s e ( 24) 其中 是在第 i 个 接触点由于 夹紧和加工负荷 造成的变形 , 0 意味着净压缩变形,而负数则代表拉伸变形 ; i i i ix y zK d i a g k k k 是表示在本地坐标系第 i 个接触刚度矩阵, 0 0 1 是单位向量 . 在这项研究中假定液压 /气动夹具,根据对外加工负荷,故在法线方向的夹紧力的强度保持不变,因此, 必须内蒙古科技大学 本科生毕业设计(外文翻译) 第 11 页 共 15 页 对方程 ( 24) 的 夹紧点 进行修改 为: i i F p ( 25) 其中 在第 i 个夹紧点的夹紧力,让 1矢量。并结合方程( 23) ( 25)与静态平衡方程,得到下面的方程组: 1L + i i F ( 26) 其中, 其中 表示相乘。由于夹紧和加工工件刚体移动, q 可通过求解式( 26)得到。工件的定位误差 向量, r r r r Zm m m m (见图 6), 现在可以计算如下: r q( 27) 其中 r Tm m Y Z 是 考 虑 工 件 中 心 加 工 点 的 位 置 向 量 , 且1 0 0 00 1 0 00 0 1 Y 0 6模拟工作 较早前提出的算法是用来确定最佳夹紧力及其对两例工件精度的影响例如 : 1 适用于工件单点力。 2 应用于工件负 载准静态铣削序列 内蒙古科技大学 本科生毕业设计(外文翻译) 第 12 页 共 15 页 如左图 7 工件夹具配置中使用的模拟研究 16L gX、 3具 图 7 所示,是用来定位 并控制 7075 - 合金( 127 毫 米 127 毫 米 米) 的 柱状块。假定为球形布局倾斜硬钢定位器 /夹具 在表 1 中给出 。工件 夹具材料 的摩擦静电 对系数 为 使用伊利诺伊大学开发 序 参考文献 26 对 加工瞬时铣削力条件进行了计算 , 如表 2 给出 例( 1),应用工件在点( 米, 米, 米)瞬时加工力, 图 4 中表 3 和表 4列出了初级夹紧力 和 最佳夹紧 力 的算法 。 该算法如图 5 所示 , 一个 米铣槽使用 行了数值模拟, 以减少 起 步 ( 米, 米, 米)和结束时( 米, 米, 米)四种情况下加工负荷载体 , 内蒙古科技大学 本科生毕业设计(外文翻译) 第 13 页 共 15 页 内蒙古科技大学 本科生毕业设计(外文翻译) 第 14 页 共 15 页 (见图 8)。 模拟计算铣削力 数据在 表 5 中给出。 图 8 最终铣削过程模拟 例如 2。 内蒙古科技大学 本科生毕业设计(外文翻译) 第 15 页 共 15 页 表 6 中 5 个 坐标列出了为模拟抽样调查点。 最佳 夹紧力 是 用前面讨论过的排序算法计算每个采样点和负载载体 最后的 夹紧力 和负载 。 7结果与讨论 例如算法 1 的绘制最佳夹紧力收敛图 9,图 9 对于固定夹紧装置在图示例假设(见图 7), 由此得到的夹紧力加权范数2 2 2 2/ 2 / 3R R R Y P P 佳夹紧 力 所述加工条件下有比初步夹紧力强度低得多的加权 范数2L, 最初的夹紧 力是通过减少工件的夹具系统补充能量算法 获得 。 由于夹紧 力和 负载造成的工件的定位误差,如表7。结果表明工件旋转小, 加工点减少错误从 等。在这种情况下, 所有加工条件 改善不是很大,因为从最初 通过互补势能 确定的最小化的夹紧力值已接近最佳夹紧力。 图 5 算法 是用第二例在一个序列应用于铣削负载到工件, 他 应 用 于 工 件 铣 削 负 载 一 个 序 列 。 最 佳 的 夹 紧 力, m a x m a x m a x m a x m a x, , ,i i i i ij x y z P P P ,对应列 表 6 每个样本点,随着最后的最佳夹紧力每个采样点的加权范数2 10, 在每个采样点的内蒙古科技大学 本科生毕业设计(外文翻译) 第 16 页 共 15 页 加权范数2 结果表明,由于每个具有最高的加权范数2L。 如图 10 所示,如果在每个夹紧点最大组成部分是用于确定初步夹紧力,则夹紧力需相应设置,上述模拟结果表明, 该方法可用于优化夹紧 力相对于初始夹紧力的强度,这种做法将减少所造成的夹紧力的加权范数2L,因此将提高工件的定位精度。 图 10 8结论 该文件提出了关于确定多钳夹具,工件受准静态加载系统的优化加工夹紧力的新方法。夹紧力的优化算法是基于接触力学的夹具与工件系统模型,并寻求尽量减少应用到所造成的工件夹紧力的加权范数2L,得出工件的定位误差。该整体模型,制定一个双目标约束优化问题,使用 算法通过两个模拟表明,涉及 3,二夹铣夹具的例子。今后的工作将解决在动态负载存在夹具与工件在系统的优化,其中惯性,刚度和阻尼效应在确定工件夹具系统的响应特性具有重要作用。 9 参考资料: 内蒙古科技大学 本科生毕业设计(外文翻译) 第 17 页 共 15 页 1、 J. D. L. S. 柔性夹具系统的有限元分析 交易美国 程杂志工业 : 134 。 2、 W. S. J. J. X. “柔性钣金夹具:原理,算法和模拟”,交易美国 造科学与工程杂志 : 1996 318。 3、 P. S. M. R. E. S. G. 负载对表面平整度的影响”工件夹具 制造科学研讨会论文集 1996,第一卷 : 146。 4、 R. J. V. R. 适用于选拔夹具设计与 优化方法 , 美国业工程杂志: 113 、 4121991。 5、 A. J. C. C. J. 计算机辅助夹具分析中的应用有限元分析和数学优化模型 , 1995 序, 777 。 6、 S. N. S. M. R. E. S. G. J. “基于 加工过程仿真 的加工装置作用 力系统 研究” , 207214 页 , 1995 7、“考虑工件夹具,夹具接触相互作用布局优化 模拟的结果” 3411998。 8、 E. C. 快速支持布局优化 ,国际机床制造, 硕士论文 1998。 9、 Y. V. M. M. 加工夹具机械构造的数学算法:分析和合成, 美国 程学报工业 “: 1989 299 。 10、 S. H. M. R. 具有摩擦性的夹具规划 美国 业工程学报 : 1991, 320327 页。 11、 S. L. W. 最小夹紧 力分析”,国际机床制造, 硕士论文 1995 年。 12、 E. C. 加工夹具的性能的 最小 最大 负荷标准 美国 业工程杂志 : 1994 13、 E. C. 加工夹具最大 负荷 的性能优化 模型 美国 业工程杂志 1995。 14、 和 .“核查和工件夹持的夹具设计”方案优化,设计和制造,4,硕士论文: 3071994。 15、 T. H. 埃利斯 霍伍德 应力能量方法分析 , 1977。 16、 M. J. . C. 对工件准静态分析功能位移 在加工夹具 的 应用程序 , 制造科学杂志与工程 : 325331 页 , 1996。 2001) 17:1041132001 Li . N. . to is to is a be a to of a of is a 32-1 of in A by to be to in it is to in . N. . 0332E 18. 8, a of is of on on 911. as 12, 13 to as a to at by of is on it D 14 by a of is it is As a be by be by of 15. a of in is by at 16to to of on 17. et 18an of In a of a Li 9 20 05by at 21 2. a on a on a to to to by A is to a of is as a of on is a 32-1 a in is to to to be or of is in is 1). at be as )j = x,y,z) in of xi,yi,1. A zi,at j = x,y,z) xi,j = x,j,z) of at a is 23. to of a be to of a an 23, p. 93:9(16*)2(2)1 - - s to a i(= 23, p. 217: - )3 - of be a q. (2). *)29(4)E* - )In to 000 N, 2of to . is to of . Li . N. by in in is by as a as to is 17 is to by , g, 2)to be in of 2of as (+ (+ () (6)ii 2of a on to , )C= .C= .nL+i= iaL+i, bL+i, gL+by at g, i = 1,2,. . .,C)to is to be by at at is is of on of to i = 1,. . .,L), X, of in g,2. in be 3). to be )by 2of be 11)to in g, by of 15, 23. to is in by at of is U* - W*) =12i=1(L+(L+(0)= 3. of 07* of W* by Q = z is ( 1, l = zof q. (10) is to is at s (+() #A of be is 19: 1)is by in 0 (12) 0of in is be by i:0(i = 1, . . ., L + C) (13)it is at a of is i# i = 1, . . .,L+C) (14)at f =5)(11)(14)q. (15) by 24. of as a In of is as 2of is as a of a of is As a to a 2of a 2to be or to e, an on To a e,at of it is a “to 2of as of e. q. (15) 16)e, (11)(14)to of an is to By e as 2of is of K, on d is 25:K =7) I in be a to of an to be a a of be A to a m) of m of 1.,At . Li . N. 4. in )(18)g, of , 2, 3 (+(+()on at At by at be in at on to 4 is to (i = 1, . . .,m)(j = x,y,z,r)(19)of k = 1,. . .,C)is at to be of is at a as q. (20):k = 1,. . .,C) (20)is a of is to of In be is a of a of is of to of on is on in to at f 大 学 名 拖拉机倒档拨叉 机 械 加 工 工 艺 卡 片 学 生 : 指导老师 : 购买后包含有 纸和说明书 ,咨询 Q 197216396 I 毕业设计 课 题: 拖拉机倒挡拨叉叉口侧面精铣夹具设计 专 题: 专 业: 机械制造及自动化 学 生 姓 名: 班 级: 学 号: 指 导 教 师: 完 成 时 间: 购买后包含有 纸和说明书 ,咨询 Q 197216396 要 本次毕业设计的题目是拖拉机倒挡拨叉叉口侧面精铣夹具设计。我主要需要完成的包括加工工艺的安排以及一种专用机床夹具设计。为了保证加工零件的精度同时节约成本和缩短加工周期以及 提高加工效率,那么一个良好的工艺安排以及专用夹具的设计就是必不可少的了。在工艺的安排上不但要考虑合理的加工要求还要考虑到操作者以及加工机械的安全。同时夹具的设计上也要考虑到使用的安全性和经济性以及安装和拆卸上的方便性。设计一个良好的工艺工装安排路线那么必须要经过对加工件的详细分析以及周密的考虑后才能得出。所以分析问题是解决问题的关键,同时还要反复的调整,来寻求最好的一个路线。这样才能让工艺路线更加的完美,才能保证工件的加工精度和加工效率以及节约材料。 关键词: 拖拉机倒挡拨叉类零件;工艺;夹具; 购买后包含有 纸和说明书 ,咨询 Q 197216396 he of is a I to a In to at a is In of to of At of of as as of To a of go a of So is to is to to to In to to of 购买后包含有 纸和说明书 ,咨询 Q 197216396 录 摘 要 1 章 绪论 1 械加工工艺概述 1 具概述 1 第 2 章 加工工艺规程设计 3 件的分析 3 件的作用 3 拉机倒挡拨叉加工的主要问题和工艺过程设计所应采取的相应措施 4 和平面的加工顺序 4 系加工方案选择 5 拉机倒挡拨叉加工定位基准的选择 5 基准的选择 5 基准的选择 6 拉机倒挡拨叉加工主要工序安排 6 械加工余量、工序尺寸及毛坯尺寸的确定 9 定切削用量及基本工时(机动时间) 11 间定额计算及生产安排 23 第 3 章 叉口侧面精铣夹具 28 究原始质料 28 位基准的选择 28 购买后包含有 纸和说明书 ,咨询 Q 197216396 V 削力及夹紧分析计算 28 差分析与计算 29 、部件的设计与选用 30 位销选用 30 向键装置设计 31 具设计及操作的简要说明 32 总结 34 参 考 文 献 35 致谢 36 购买后包含有 纸和说明书 ,咨询 Q 197216396 买后包含有 纸和说明书 ,咨询 Q 197216396 买后包含有 纸和说明书 ,咨询 Q 197216396 1 第 1章 绪论 械加工工艺概述 机械加工工艺流程是工件或者零件制造加工的步骤,采用机械加工的方法,直接改变毛坯的形状、尺寸和表面质量等,使其成为零件的过程称为机械加工工艺过程。 比如,上面说的,粗加工可能包括毛坯制造,打磨等等,精加工可能分为车,钳工,铣床,等等,每个步骤就要有详 细的数据了,比如粗糙度要达到多少,公差要达到多少。机械加工工艺就是在流程的基础上,改变生产 对象的形状、尺寸、相对位置和性质等,使其成为成品 或半成品,是每个步骤,每个流程的详细说明。 总的来说,加工工艺是每个步骤的详细参数工艺流程是纲领,工艺规程是某个厂根据实际情况编写的特定的加工工艺。 具概述 现代生产中,机床夹具是一种不可缺少的工艺装备,它直接影响着加工的精度、劳动生产率和产品的制造成本等,在企业的产品设计和制造以及生产技术准备中占有极其重要的地位。 夹具是一种装夹工件的工艺装备,它广泛地应用于机械制造过程的切削加工、热处理、装配、焊接和检测等工艺过程中。 在金属切削机床上使用的夹具 统称为机床夹具。在机床夹具设计是一项重要的技术工作。 在机床上用夹具装夹工件时,其主要功能是使工件定位和夹紧。 1机床夹具的主要功能 机床夹具的主要功能是装工件,使工件在夹具中定位和夹紧。 ( 1) 位 定位是通过工件定位基准面与夹具定位元件面接触或配合实现的。 确定工件在夹具中占有正确位置的过程。正确的定位可以保证工件加工的尺寸和位置精度要求。 ( 2)夹紧 由于工件在加工时,受到各种力的作用,若不将工件固定,则工件会松动、 2 脱落。工件定位后将其固定,使其在加工过程中保持定位位置不变的操作。因此,夹紧为工件提供 了安全、可靠的加工条件。 2机床夹具的特殊功能 机床夹具的特殊功能主要是对刀和导向。 ( 1)对刀 如铣床夹具中的对刀块,它能迅速地确定铣刀相对于夹具的正确位置。调整刀具切削刃相对工件或夹具的正确位置。 ( 2)导向 导向元件制成模板形式,故钻床夹具常称为钻模 如钻床夹具中的钻模板的钻套,能迅速地确定钻头的位置 并引导其进行钻削。镗床夹具(镗模)也具有导向功能。 随着科学技术的巨大进步及社会生产力的迅速提高,夹具已从一种辅助工具发展成为门类齐全的工艺装备。 购买后包含有 纸和说明书 ,咨询 Q 197216396 3 第 2 章 加工工艺规程设计 件的分析 件的作用 题目给出的零件是拖拉机倒挡拨叉。题目所给 定的零件是拖拉机 变速箱中的倒档 拨叉,它位于倒档 拨叉杆上,主要作用一是通过倒档拨叉杆将扭矩传递给倒档拨叉,拨动倒档同步器,改变齿轮的啮合方向,实现拖拉机的倒行;二是在倒档拨叉上有一个配合槽,与其他零件配合装配,在拨叉转动时带动其运动。零件上 孔,装配在倒档拨叉杆上,用螺钉固定保证拨叉和拨叉杆的相对位置。宽 17槽与其他零件相配合,半圆形叉口拨动同步器。 拖拉机倒挡拨叉的主要作用是支承 各传动轴,保证各轴之间的中心距及平行度,并保证部件与发动机正确安装。因此拖拉机倒挡拨叉零件的加工质量,不但直接影响的装配精度和运动精度,而且还会影响工作精度、使用性能和寿命。拖拉机倒挡拨叉零件的底面用以安装盖,实现功能。 4 件的工艺分析 由拖拉机倒挡拨叉零件图可知。它的外表面上有五个平面需要进行加工。支承孔系在前后端面上。此外各表面上还需加工一系列螺纹孔。因此可将其分为三组加工表面。它们相互间有一定的位置要求。现分析如下: 1. 以 为中心的加工面 这一组加工面包括:一 个的 以及对其倒角,宽 17的槽口,在 所在的轮毂上钻两个孔并攻丝,规格为 用来做为固定倒档拨叉和拨叉杆之用。 2. 叉口处的加工面 这 一组加工面包括 :铣叉口的侧 面,铣叉口内圆面 ,内圆面所在 的圆 弧半径为 这两组加工面之间有一定的位置要求: ( 1) 口对 的轴心线及 口中心线位置公差 ( 2)叉口侧面和螺纹孔中心线的位置要求是 由 以上分析可知, 对于这两组加 工表面而言,我们 可以先加工其 中一 组表面,然后借助于专用夹具进行另一组表面的加工,并保证他们之间的 位置精度要求。 拉机倒挡拨叉加工的主要问题和工艺过程设计所应采取的相应措施 由以上分析可知。该拖拉机倒挡拨叉零件的主要加工表面是平面及孔系。一般来说,保证平面的加工精度要比保证孔系的加工精度容易。因此,对于拖拉机倒挡拨叉来说,加工过程中的主要问题是保证孔的尺寸精度及位置精度,处理好孔和平面之间的相互关系。 由于的生产量很大。怎样满足生产率要求也是加工 过程中的主要考虑因素。 和平面的加工顺序 拖拉机倒挡拨叉类零件的加工应遵循先面后孔的原则:即先加工拖拉机倒挡拨叉上的基准平面,以基准平面定位加工其他平面。然后再加工孔系。拖拉机倒挡拨叉的加工自然应遵循这个原则。这是因为平面的面积大,用平面定位可以确保定位可靠夹紧牢固,因而容易保证孔的加工精度。其次,先加工平面可以先切去铸件表面的凹凸不平。为提高孔的加工精度创造条件,便于对刀及调整,也有利于保护刀具。 拖拉机倒挡拨叉零件的加工工艺应遵循粗精加工分开的原则,将孔与平面的 5 加工明确划分成粗加工和精加工 阶段以保证孔系加工精度。 系加工方案选择 拖拉机倒挡拨叉孔系加工方案,应选择能够满足孔系加工精度要求的加工方法及设备。除了从加工精度和加工效率两方面考虑以外,也要适当考虑经济因素。在满足精度要求及生产率的条件下,应选择价格最底的机床。 根据拖拉机倒挡拨叉零件图所示的拖拉机倒挡拨叉的精度要求和生产率要求,当前应选用在组合机床上用镗模法镗孔较为适宜。 ( 1)用镗模法镗孔 在大批量生产中,拖拉机倒挡拨叉孔系加工一般都在组合镗床上采用镗模法进行加工。镗模夹具是按照工件孔系的加工要求设计制造的。当镗刀杆 通过镗套的引导进行镗孔时,镗模的精度就直接保证了关键孔系的精度。 采用镗模可以大大地提高工艺系统的刚度和抗振性。因此,可以用几把刀同时加工。所以生产效率很高。但镗模结构复杂、制造难度大、成本较高,且由于镗模的制造和装配误差、镗模在机床上的安装误差、镗杆和镗套的磨损等原因。用镗模加工孔系所能获得的加工精度也受到一定限制。 ( 2)用坐标法镗孔 在现代生产中,不仅要求产品的生产率高,而且要求能够实现大批量、多品种以及产品更新换代所需要的时间短等要求。镗模法由于镗模生产成本高,生产周期长,不大能适应这种要求,而坐标 法镗孔却能适应这种要求。此外,在采用镗模法镗孔时,镗模板的加工也需要采用坐标法镗孔。 用坐标法镗孔,需要将拖拉机倒挡拨叉孔系尺寸及公差换算成直角坐标系中的尺寸及公差,然后选用能够在直角坐标系中作精密运动的机床进行镗孔。 拉机倒挡拨叉加工定位基准的选择 基准的选择 粗基准选择应当满足以下要求: ( 1)保证各重要支承孔的加工余量均匀; ( 2)保证装入拖拉机倒挡拨叉的零件与箱壁有一定的间隙。 为了满足上述要求,应选择的主要支承孔作为主要基准。即以拖拉机倒挡拨叉的输入轴和输出轴的支承孔作为粗 基准。也就是以前后端面上距顶平面最近的孔作为主要基准以限制工件的四个自由度,再以另一个主要支承孔定位限制第五个自由度。由于是以孔作为粗基准加工精基准面。因此,以后再用精基准定位加工主要支承孔时,孔加工余量一定是均匀的。由于孔的位置与箱壁的位置是同一 6 型芯铸出的。因此,孔的余量均匀也就间接保证了孔与箱壁的相对位置。 基准的选择 从保证拖拉机倒挡拨叉孔与孔、孔与平面、平面与平面之间的位置 。精基准的选择应能保证拖拉机倒挡拨叉在整个加工过程中基本上都能用统一的基准定位。从拖拉机倒挡拨叉零件图分析可知, 它的顶平面与各主要支承孔平行而且占有的面积较大,适于作精基准使用。但用一个平面定位仅仅能限制工件的三个自由度,如果使用典型的一面两孔定位方法,则可以满足整个加工过程中基本上都采用统一的基准定位的要求。至于前后端面,虽然它是拖拉机倒挡拨叉的装配基准,但因为它与拖拉机倒挡拨叉的主要支承孔系垂直。如果用来作精基准加工孔系,在定位、夹紧以及夹具结构设计方面都有一定的困难,所以不予采用。 拉机倒挡拨叉加工主要工序安排 对于大批量生产的零件,一般总是首先加工出统一的基准。拖拉机倒挡拨叉加工的第一个工序也就是加 工统一的基准。具体安排是先以孔定位粗、精加工顶平面。第二个工序是加工定位用的两个工艺孔。由于顶平面加工完成后一直到拖拉机倒挡拨叉加工完成为止,除了个别工序外,都要用作定位基准。因此,底面上的螺孔也应在加工两工艺孔的工序中同时加工出来。 后续工序安排应当遵循粗精分开和先面后孔的原则。先粗加工平面,再粗加工孔系。螺纹底孔在多轴组合钻床上钻出,因切削力较大,也应该在粗加工阶段完成。对于拖拉机倒挡拨叉,需要精加工的是支承孔前后端平面。按上述原则亦应先精加工平面再加工孔系,但在实际生产中这样安排不易于保证孔和端面相互垂直。因此,实际采用的工艺方案是先精加工支承孔系,然后以支承孔用可胀心轴定位来加工端面,这样容易保证零件图纸上规定的端面全跳动公差要求。各螺纹孔的攻丝,由于切削力较小,可以安排在粗、精加工阶段中分散进行。 加工工序完成以后,将工件清洗干净。清洗是在 c9080 的含 打及 硝酸钠溶液中进行的。清洗后用压缩空气吹干净。保证零件内部杂质、铁屑、毛刺、砂粒等的残留量不大于 根据以上分析过程,现将拖拉机 倒挡拨叉加工工艺路线确定如下: 1. 工艺路线方案一 工序 摇臂钻床上钻孔、攻丝,规格 工序 立式钻床上扩、铰孔 倒角。 工序 卧式铣床上粗铣叉口侧面。 工序 卧式铣床上铣叉口。 7 工序 手工去锐边。 工序 卧式铣床上铣槽。 工序 卧式铣床上精铣叉口侧面。 工序 去毛刺。 工序 清洗。 工序 终检。 2. 工艺路线方案二 工序 立式钻床上扩、铰孔 倒角。 工序 卧式铣床上粗铣叉口侧面。 工序 卧式铣床上铣叉口。 工序 手工去锐边。 工序 卧式铣床上铣槽。 工序 摇臂钻床上钻孔、攻丝,规格 工序 手工去毛刺。 工序 卧式铣床上精铣叉口侧面。 工序 去毛刺。 工序 清洗。 工序 终检。 以上加工方案大致看来合理,但通过仔细考虑,零件的技术要求及可能采取的加工手段之后,就会发现仍有问题, 方案二把底面的钻孔工序调整到后面了,这样导致铣削加工定位基 准不足,特别镗孔工序。 以上工艺过程详见机械加工工艺过程综合卡片。综合选择方案一: 工序 立式钻床上扩、铰孔 倒角。 工序 卧式铣床上粗铣叉口侧面。 工序 卧式铣床上铣叉口。 工序 手工去锐边。 工序 卧式铣床上铣槽。 工序 摇臂钻床上钻孔、攻丝,规格 工序 手工去毛刺。 工序 卧式铣床上精铣叉口侧面。 工序 去毛刺。 8 工序 清洗。 工序 终检。 上述两种方案看起来大体合 理,不过仔细一看都有不足之处。第 1 个 方案先是“摇臂钻床上钻孔、攻丝,规格 ,先把这一步工序放在前面 是想,后面还有“钻 孔”这一步工序,如果先钻孔攻丝那么就可 以省略一步“手工去毛刺”的工序。能这样想,出发点是好的,考虑到可 以减少一步工序,似乎能减少劳动工时,提高生产率,可是没有考虑到, 把这一步工序放前,定位比较难,不易保证必要的位置精度,夹具设计困 难,实际可行性比较低。再看第 2 个方案,第 2 个方案把“钻 ” 这一步工序放在了前面,这样为以后 的各个工序提供了加工基准,工序安 排比较科学合理。不过它和第 1 个方案一样,都把“扩、铰孔 “倒角”放在了一步工序中。在这一步中通过换钻套可以倒一边的角,不 过要倒另一边的角,就要把工件卸下翻面倒角,这样增加了夹具的设计难 度。不过主要的是立式钻床体积比较大,操作起来不方便,并且倒角也没 有高的精度要求,从经济效益上来考虑是不合算的。通过分析后,把这一 步工序一分为二,把“倒角”独立出来,单独作为一步工序,因为倒角的 精度要求不高,我们可以把这一步工序放在台钻上来完成。台钻体积比较 小 ,操作简单,夹具结构也简单,这样零件的加工工时降下来了,生产效 率上来了,降低了零件的成本。 估算每一步工序所用夹具的大体尺寸,根据金属切削机床夹具设计 手册(第二版)上给出的各种切削机床的规格尺寸,选择每一道工序所用 的合适的机床。 因此,最后的加工路线确定如下: 工序 立式钻床上扩、铰孔 以拨叉叉口内圆非加工面、槽口和 的端面为粗基 准定位。 选用 式钻床加工,采用专用夹具。 工序 台钻上对 角。 以 端面为基准定位。 选用 式钻床加工,采用专用夹具。 工序 卧式铣床上粗铣叉口侧面。 以 端面为基准定位。 选用 式铣床加工,采用专用夹具。 工序 卧式铣床上铣叉口。 以 毛坯上的槽口为基准定位。 9 选用 式铣床加工,采用专用夹具。 工序 手工去锐边。 用扁平挫刀手工去锐边,可设计简易的支承台。 工序 卧式铣床上铣槽。 以 、叉口内圆侧面为基准定位。 选用 式铣床加工,采用专用夹具。 工序 摇臂钻床上钻孔、攻丝,规格 以 及其端面、叉口内圆侧面为基准定位。 选用 臂钻床加工,采用专用夹具。 工序 手工去毛刺。 用圆形小挫刀手工去毛刺,可以设计简易的支承台,注意不 不要划伤内圆面。 工序 卧式铣床上精铣叉口侧面。 以 和螺钉对准长销上的槽为基准定位。 选用 式铣床加工,采用专用夹具。 工序 去毛刺。 用扁平挫刀手工去毛刺, 可设计简易的支承台。 工序 清洗。 用专用清洗机清洗。 工序 终检。 械加工余量、工序尺寸及毛坯尺寸的确定 零件材料为 虑到拖拉机运行时经常需要挂倒档以倒行或辅 助转向,因此零件在工作过程中经常受到冲击性载荷,采用这种材料零件 的强度也能保证。由于零件年产量为 4000 件,已达到成批生产水平,而且 零 件的轮廓尺寸不 大,选用砂型铸 造,采用机械翻 砂造型,铸造精 度为 2 级,能保证铸件的尺寸要求,这从提高生产率和保证加工精度上考虑也是 应该的。 (二)毛坯设 计 拖拉机的倒档拨叉零件材料为 度选用 260坯重 约 1产类型为成批生产,采用砂型铸造,机械翻砂造型, 2 级精度组。 根据上 述原始资料及加工 工艺,分别确定各 加工表面的加工余 量,对 毛坯初步设计如下: 1. 孔 为 了便于加工,在 毛坯的设计时 ,可以设计底孔。 根据常用刀具 的规 格和合理的切削用量,可以铸出 10的底孔。这样加工这个孔到规定的 10 尺寸,可以分为以下步骤: 2. 叉口侧面 该 两侧面分别进行 一 次粗、精铣 。根据资料可知, 选取加工余量 等级 为 G,选取尺寸公差等级为 9 级。 所以根据相关资料和经验可知,毛坯的叉口厚度定为 10合要求。 3. 叉口内圆面 叉口内圆面的圆弧半径为 口精度要求不是很高,可以进行一 次精加工。所以其加工余量不宜取得过大,但为了能保证其加工精度,而 进行一次精铣,所以在毛坯铸造时给出 2加工余量。 4. 铣槽 槽宽为 为 17资料知,砂型铸造机械翻砂造型的尺寸公 差等级为 810 级,加工余量等 级为 G。取尺寸公差等级为 9 级,在铸造时 留出 2加工余量,均满足加工要求。 5. 钻孔、攻丝 在 孔处钻孔,攻丝,锪孔。 在此处,因为加工的螺纹孔不是很大,所以可以不必留铸造底孔。 因 其它表面均为不 加工表面,而 且砂型机器造型铸 造铸造出的毛 坯表 面就能满足它们的精度要求,所以,不需要在其它表面上留有加工余量。 根 据上述原始资料 及加工工艺, 确定了各加工表面 的加工余量、 工序 尺 寸 ,这 样毛 坯的 尺寸 就可 以定 下 来了 ,毛 坯的 具体 形状 和 尺寸 见图 拖拉机倒挡拨叉”零件毛坯简图。 11 根据 上述原始资料及加工工艺,分别确定各加工表面 的加工余量和工 步如下: 1. 孔 扩孔: 16 2Z=6二次扩孔: 2Z=粗铰: 2Z=精铰 : 2Z=2. 叉口侧面 粗铣: 2Z=精铣: 2Z=3叉口内圆面 一次精铣: Z=24. 铣槽 一次精铣: Z=25. 钻孔、攻丝 在 孔处钻孔,攻丝,锪孔。 先在加工面上钻出 4孔,再扩孔至 是攻丝前的 底孔,然后用 机用丝锥攻丝,最后锪孔 定切削用量及基本工时(机动时间) 工序 1: 钻孔 16孔 孔 床:立式钻床 具:根据参照参考文献 3表 9 选高速钢锥柄麻花钻头。 钻孔 孔 6 孔,再扩到 ,所以 16D 。 切削深度8pa 给量 f :根据参考文献 3表 38,取 。 切削速度 V :参照参考文献 3表 41,取 V m s 。 机床主轴转速 n : 1 0 0 0 1 0 0 0 0 . 4 8 6 0 5 3 9 . 5 3 / m i 1 4 1 7 , 按照参考文献 3表 31,取 630 / m 所以实际 切削速度 v : 3 . 1 4 1 7 6 3 0 0 . 5 6 /1 0 0 0 1 0 0 0 6 0m s 切削工时 被切削层长度 l : 42l 12 刀具切入长度 1l : 1 17( 1 2 ) 1 2 0 1 5 . 9 622c t g k c t g m m m m 刀具切出长度 2l : 12 取 2 走刀次数为 1 机动时间14 2 6 3 0 . 2 5 m i 3 3 6 3 0 扩孔 具:根据参照参考文献 3表 31 选择硬质合金锥柄麻花扩孔钻头。 片型号: 钻孔 先采取的是先钻到 16 孔再扩到 ,所以 ,1 切削深度给量 f :根据参考文献 3表 52,取 f mm r 。 切削速度 V :参照参考文献 3表 53,取 V m s 。 机床主轴转速 n : 1 0 0 0 1 0 0 0 0 . 4 4 6 0 4 2 6 . 7 8 / m i 1 4 1 9 . 7 按照参考文献 3表 31,取 500 / m 所以实际切削速度 v : 3 . 1 4 1 9 . 7 5 0 0 0 . 5 2 /1 0 0 0 1 0 0 0 6 0m s 切削工时 被切削层长度 l : 42l 刀具切入长度 1l 有: 11 1 9 . 7 1 7( 1 2 ) 1 2 0 2 2 . 8 6 322c t g k c t g m m m m 刀具切出长度 2l : 12 ,取 2 走刀次 数为 1 机动时间24 2 3 3 0 . 1 6 m i 6 5 0 0 铰孔 具:根据参照参考文献 3表 54,选择硬质合金锥柄机用铰刀。 切削深度且 。 进给量 f :根据参考文献 3表 58, 取 。 13 切削速度 V :参照参考文献 3表 60,取 。 机床主轴转速 n : 1 0 0 0 1 0 0 0 0 . 3 2 6 0 3 0 5 . 7 3 / m i 1 4 2 0 按照参考文献 3表 31取 315 / m 实际切削速度 v : 3 . 1 4 2 0 6 0 0 0 . 6 3 /1 0 0 0 1 0 0 0 6 0m s 切削工时 被切削层长度 l : 42l 刀具切入长度 1l , 01
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。