向量相等与共线向量.ppt_第1页
向量相等与共线向量.ppt_第2页
向量相等与共线向量.ppt_第3页
向量相等与共线向量.ppt_第4页
向量相等与共线向量.ppt_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1平面向量的实际背景及基本概念 2.1.3 相等向量与共线向量 复习提问 1.向量与数量有什么联系和区别? 向量有哪几种表示? 联系:向量与数量都是有大小的量; 区别:向量有方向且不能比较大小, 数量无方向且能比较大小. 表示:向量可以用有向线段表示, 也可以用字母符号表示. 2.什么叫向量的模?零向量、单位向量 、平行向量分别是什么概念? 向量的模:表示向量的有向线段的长度. 零向量:模为0的向量. 单位向量:模为1个单位长度的向量. 平行向量:方向相同或相反的非零向量. 3.引进向量概念后,我们就要建立相关 的理论体系,为了研究的需要,我们必须对 向量中的某些现象作出合理的约定或解释, 特别是两个向量的相互关系.对此,我们将作 些研究. 探究(一):相等向量 思考1:因为向量完全由它的方向和模确定. 对于两个非零向量a、b,就其模等与不等, 方向同与不同而言,有哪几种可能情形? 模相等, 方向相同; 模模相等相等, , 方向方向不相同不相同; ; 模不相等, 方向相同; 模不相等, 方向不相同; (3)任意两个相等的非零向量,都可用同一 条有向线段表示,并且与有向线段的起点无关 . 思考2:我们知道两个向量不能比较大小,只有模 等与不等,方向同与不同的区别,你认为如何规定 两个向量相等? 长度相等且方向相同的向量叫做相等向量. 【相等向量】 (1)向量与相等,记作; (2)零向量与零向量相等; 思考3:对于非零向量 ,如果 , 通过平移使起点A与C重合, 那么终点B与D的位置 关系如何? D C B A B A (4)在平面上,两个长度相等且指向一致的 有向线段表示同一个向量;因为向量完全由它 的方向和模确定. a b AB (5)向量或有向线段平移,不会改变其长度和 方向 思考4:用有向线段表示非零向量 如果 ,那么A、B、C、D四点的位置 关系有哪几种可能情形? AB CD A B C D 探究(二):平行向量与共线向量 思考1:如果两个非零向量所在的直线互相平 行,那么这两个向量的方向有什么关系? 思考2:我们知道方向相同或相反的非零向量 叫做平行向量,向量a与b平行记作a/b,那么 平行向量所在的直线一定互相平行吗? 方向相同或相反 思考3:零向量0与向量a平行吗? 零向量与任一向量平行. 思考4:将向量平移,不会改变其长度和方向.如图 ,设a、b、c是一组平行向量,任作一条与向量a所 在直线平行的直线l,在l上任取一点O,分别作 那么点A、B、C的位置关系如何? O l a b c 思考5:如果非零向量 是共线向量,那 么点A、B、C、D是否一定共线? BAC 点A、B、C在同一条直线上 上述分析表明,任一组平行向量都可以移动到 同一直线上,因此,平行向量也叫做共线向量 平行向量也叫做共线向量 思考7:对于向量a、b、c,若a / b, b / c,那么a / c吗? 思考8:对于向量a、b、c,若a =b, b =c,那么a = c吗? 思考6:若向量a与b平行(或共线),则 向量a与b相等吗?反之,若向量 a与b相 等,则向量a与b平行(或共线)吗? 例1 如图,设O为正六边形ABCDEF的中心,分 别写出与 相等的向量. AB C D E F O 理论迁移 例2 判断下列命题是否正确: 若两个单位向量共线,则这两个向量相等( ) 不相等的两个向量一定不共线 ( ) 与共线,与共线,则与c也共线( ) 任意两个相等的非零向量的始点与终点是一平行 四边形的四顶点( ) 向量与不共线,则与都是非零向量( ) 有相同起点的两个非零向量不平行( ) 归纳与整理 1.相等向量-长度相等且方向相同的向量. 平行向量与共线向量是同一概念, 相等向量与平行向量是包含概念. 2.任意两个相等的非零向量,都可用同一条 有向线段表示,并且与有向线段的起点无关 . 3.向量的平行、共线与平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论