




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率论课程的一些认识进过这么久对概率论的学习,在基础知识的积累之上,在高等数学工具的应用之下,我对这门课程有了更为深入的认识。一、概率论定义的变迁与意义概率论是研究随机现象数量规律的数学分支。和数理统计一起,是研究随机现象及其规律的一门数学学科。传统概率(拉普拉斯概率)的定义是由法国数学家拉普拉斯(Laplace)提出的。如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验。传统概率在实践中被广泛应用于确定事件的概率值,其理论根据是:如果没有足够的论据来证明一个事件的概率大于另一个事件的概率,那么可以认为这两个事件的概率值相等。如果仔细观察这个定义会发现拉普拉斯用概率解释了概率,定义中用了相同的可能性一词,其实指的就是相同的概率。这个定义也并没有说出,到底什么是概率,以及如何用数字来确定概率。因此,如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的概率论基础一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用.由上述定义的有关说明可以发现,概率论的研究方法大致可分为两个方面。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论的,因此概率论的研究方法本质上是演绎式的;而统计学的方法是归纳式的,从所研究对象的全体当中随机抽取一部分进行试验以获得数据,依据数据对整体作出判断,从而“归纳”得到结论。随着数学的不断发展,概率的定义也越来越实际化,越来越与生活密切相关。同时,越来越丰富的学科发展,为概率论本身的研究和在日常生活中的广泛应用提供了更深入的条件.进入大学以来,有关概率论与数理统计的学习更加的系统化和深入化。由于大一时期学习了高等数学(工科数学分析)和线性代数等高等数学的普遍知识,我们对极限思想和微积分思想有了一个更加深刻的认识,在这些数学思想和数学工具的帮助下,我们能够学习更多的概率论和数理统计的系统化的知识,也能够用这些知识更加有效的解决实际生活中的问题,使得课程学习与实际问题的解决相结合,学以致用.本学期的课程,我们首先学习了概率论部分重要的知识,对随机事件与概率、条件概率与独立性、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征与极限定理等相关知识进行了认真的学习,紧接着在数理统计部分,对数理统计的基本概念和参数估计等知识进行学习.下面对相关知识的学习进行简要总结。1.随机事件与概率.随机事件是概率和概率论研究的基本内容,我们对随机事件的关系和随机事件概率的关系做了认真的研究。从古典概率的基本性质入手,结合几何概率和统计概率的学习,给出了概率的公理化定义。内容如上所述)为后续进一步学习概率等相关知识做基础性的垫。2.条件概率与独立性由于实际问题中事件之间的关系更为复杂,并且各个事件之间相互影响,相互制约,因此,为了能够有效地解决生活的问题,我们在此研究了条件概率和独立性的有关问题。其中重要的知识为(1)乘法定理:两个事件积德概率等于其中一个事件的概率与另一个事件在前一事件发生的条件下的条件概率的乘积。即P(AB)=P(A)P(B|A)=P(B)P(A|B). (2)全概率公式(3)贝叶斯公式(4)独立性(5)重复独立实验和二项概率公式这些有关的知识从理论上对概率的研究提供了有效地保证,使得解决实际问题有理论的支持。3.随机变量及其分布由于随机事件是集合,无法用数学分析的工具加以研究,因此我们引入随机变量,从而使得概率的研究对象由随机事件扩大为随机变量,用微积分等工具进行研究,大大增强了我们研究随机现象的手段。本章的内容,先由离散型随机变量的研究过渡到对主体的连续性随机变量的研究,通过研究连续性随机变量的分布函数和概率密度,对事件有了更加精确地认识。4.多维随机变量及其分布事实上,在很多随机现象中,往往要涉及到多个随机变量,例如,向一个目标进行射击,如果只考虑弹着点与靶心的距离,那么用一个随机变量来研究就可以了;如果要考虑弹着点的位置,那么就需要用两个随机变量来描述.5.随机变量的数字特征与极限定理在实际生活中,有时候我们并不需要精确地指导随机变量的概率分布,只需要它的某些数字特征就足够。数字特征能比较集中的反应随机变量的某些统计特性,而且许多重要分布中的参数都与数字特征有关。我们认真研究的数字特征有:数学期望、方差、协方差、相关系数和矩。概率论中最重要的理论成果是极限定理,尤以大数定律和中心极限定理为重。19世后期,极限理论的发展成为概率论研究的中心课题,俄国数学家切比雪夫在这方面作出了重要贡献。他在1866年建立了关于独立随机变量序列的大数定律,使伯努利定理和泊松大数定理成为其特例切比雪夫还将棣莫弗拉普拉斯极限定理推广为更一般的中心极限定理。切比雪夫的成果后又被他的学生马尔可夫(,18561922)发扬光大,推进了20世纪概率论发展的进程。6.数理统计数理统计以概率论为理论基础,根据试验或观测得到的数据,研究如何利用有效地方法对这些已知数据进行整理、分析和推断,从而对研究对象的性质和统计规律作出合理和科学的估计和判断。我们的学习主要以总体、样本、统计量与抽样分布等数理统计的基本概念和x2分布、t分布,F分布三种常用的统计分布为主,对事件进行合理的分析与推断三、概率论学习带给我的启示:对概率论的学习一直伴随在我的数学的学习过程中,数学工具的复杂化、数学思想的深入化、实际情况的多样化使得我们队概率的认识越来越深刻。这么久的概率的学习,不管是在专业知识上,还是在思想上,我都有了很大的认识。与此同时,我也获得了一些启示:1.数学工具的进步能够促进对实际问题的深刻认识;同样,对实际问题的深入的认识,也不断地促进着数学的进步。科学与技术的相互作用就是如此,人类文明的不断进步就是来自于这种良性的作用机制。2.实际问题永远不能够用数学模型完整而精确地解释,我们所做的所有的工作,只能在“误差”允许的条件下,对实际问题进行最切合的估计。从某种程度上讲,所有的科学研究都是如此,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西农业职业技术大学《导视设计》2024-2025学年第一学期期末试卷
- 安徽扬子职业技术学院《酒店营销》2024-2025学年第一学期期末试卷
- 厦门理工学院《建筑给排水与消防》2024-2025学年第一学期期末试卷
- 2025版城市供电设施改造施工合同范本
- 二零二五年度别墅租赁担保合同及增值服务
- 二零二五年度文化产业发展劳务外包个人合作合同
- 二零二五年度模具制造行业环保责任合同模板
- 二零二五年度生态恢复与荒山承包合作协议
- 二零二五房屋租赁押金及租金支付及违约责任协议
- 二零二五年度电商平台家具产品独家代理合同样本
- 医用高等数学智慧树知到答案2024年南方医科大学
- 中医护理教案
- 庄毓敏-商业银行业务与经营-第6章
- JGJ/T235-2011建筑外墙防水工程技术规程
- 数据安全重要数据风险评估报告
- 四害消杀培训
- 伐木工安全培训
- 旅游业行业中层管理人员培训方案
- LED外贸英语入门
- 机械图纸识别(修订版)
- 2024年湖北邮政集团招聘笔试参考题库附带答案详解
评论
0/150
提交评论