




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20.1.1 数据的集中趋势一、教学目标1. 理解数据的权和加权平均数的概念;2.掌握加权平均数的计算方法。3. 初步经历数据的收集与处理过程,发展学生初步的统计意识和数据处理能力。二、课时安排1课时三、教学重点会求一组数据的算术平均数和加权平均数。四、教学难点理解加权平均数的概念,利用加权平均数解决实际问题。五、教学过程(一)新课导入【过渡】在小学的时候,我们就接触过平均数这个概念。而我们日常生活中,也经常能遇到这类问题,比如我们在每次考试结束后要进行横向对比,看本班级在年级中的所排名次如何,自己在本班中排名第几,这就需要知道各科分数这些数据,并要对数据进行处理之后才能得出结论,现在,我们就来回忆一下平均数。1、如何求一组数据的平均数?2、七位裁判给某体操运动员打的分数分别为:7.8,8.1,9.5,7.4,8.4,6.4,8.3.如果去掉一个最高分,去掉一个最低分,那么,这位运动员平均得分是多少?(学生回答)【过渡】刚刚的问题呢,都是比较简单的问题,今天我们就来学习一下更进一步的关于平均数的问题。(二)讲授新课【过渡】在正式的对新课进行讲解之前,我们先通过两个简单的问题,来检查一下同学们的预习情况。【预习反馈】1、小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为95分、80分、90分,若依次按照60%、30%、10%确定成绩,则小王的成绩是()A85.5分B90分C92分D265分2、调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆那么这30天在该时段通过该路口的汽车平均辆数为()A125辆B320辆C770辆D900辆【过渡】大家刚刚回答的都很正确,看来,大家预习的都不错。那么现在,就由我带领大家再来认识加权平均数。加权平均数:【过渡】通过之前的学习,我们知道了平均数可以反映一组数据的平均水平,那么,在实际问题中,我们有该如何理解平均数的统计意义呢?课本问题1。【过渡】对于问题(1),我们之前学习过,平均数表示一组数据的“平均水平”。因此我们对这两个应聘者的成绩求取平均值,即能得到两者的综合成绩。(学生计算回答)【过渡】通过比较,我们发现,显然甲的成绩比乙高,所以从成绩看,应该录取甲。但是在生活中,我们会发现,有些时候会侧重其中一点考虑,这个时候又该如何选择呢?我们看一个第二个小问题。【过渡】我们对问题(2)进行分析,发现(2)中更侧重于读写,因此,在求平均数时,我们不能像上一个那样,而应该将不同项目的比例考虑进去。对两者的成绩进行比较,我们发现,乙的成绩更好,因此,(2)的情况下应该选择乙。【过渡】刚刚的(2)中,根据实际需要对不同类型的数据赋予与其重要程度相应的比重,这其中,2、1、3、4分别称为听、说、读、写四项成绩的权,而相应的平均数则称为加权平均数。一般地,若n个数x1,x2,xn的权分别是w1,w2,wn,则叫做这n个数的加权平均数。【过渡】从这个问题中,我们发现,这里的权的表现形式是:比例形式给出。【过渡】想一想,如果这家公司想招一名口语能力较强的翻译,听、说、读、写的成绩按照3322的比确定,那么甲、乙谁被录取?(学生计算回答)【过渡】通过刚刚的计算,大家都认识了加权平均数,和之前的两个问题相比较,我们能够发现权的作用,权不同,就会得到不同的结果,现在,我们来看一下例1吧。课本例1讲解。【过渡】和刚刚的问题不太相同的是,这里的权是以另外一种形式给出的,百分比形式给出。【过渡】通过刚刚两个问题的分析,大家能够说出平均数与加权平均数的区别与联系吗?(1)算术平均数是加权平均数的一种特殊情况;(2)在实际问题中:当各项权相等时,计算平均数就要采用算术平均数;当各项权不相等时,计算平均数就要采用加权平均数。【过渡】接下来,我们再探究一种关于加权平均数的情况。【过渡】在生活中,我们会遇到这样的问题,比如说,统计一个班里的年龄,总会有一部分人的年龄是相同的,这个时候,我们应该如何计算呢?讲解课本例2。【过渡】对于例2这样的情况,我们可以将每一个年龄下有多少人的那个数看做权,即8、16、24、2分别是权,然后再计算就可以。再这里,我们看到权的第三种表现形式:直接以数据形式给出。【过渡】通过这个例题,我们学习到另一种加权平均数的计算。在求n个数的平均数时,如果x1出现f1次,x2出现f2次,xk出现fk次(这里f1+f2+fk=n)那么这n个数的算术平均数=也叫做x1,x2,,xk这k个数的加权平均数,其中f1,f2,,fk分别叫做x1,x2,,xk的权。【过渡】除了这样的情况之外,我们还会遇到一种情况,比如说统计公交车的载客量,我们一般将其分为几个段,然后再进行计算。我们来看探究的内容。【过渡】表中我们看到了组中值这个词,在分段的计算平均数时,这个词可是很重要的,组中值是指这个小组的两个端点的数的平均数。如第一段的组中值就是1+21的一半得到的。【过渡】在计算这类问题时,根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权。【过渡】大家计算看看吧,看与课本的答案是否一致。【过渡】一般的计算器都是有统计功能的,大家阅读以下这段话,总结一下如何用计算器计算平均数吧。课件展示,学生回答填空。【过渡】平均数一般都表示一组数据的整体趋势,此外,用样本的平均数也可以估计总体的平均数,我们一起来看例3的内容。【过渡】对于这批灯泡的寿命,由于灯泡的数量较大,因此,我们不可能用全面调查的方法考察平均使用寿命。在这个时候,我们就需呀采用样本的平均数估计整体平均数的方法。课件展示解题过程。(三)重难点精讲加权平均数的计算数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响对于一组不同权重的数据,加权平均数更能反映数据的真实信息(四)归纳小结1、 加权平均数:权:表示数据重要程度加权平均数:=2、利用样本的平均数估计整体的平均数。(五)随堂检测1、若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是( D )Ax+y2 B x+ym+n Cmx+nyx+y D mx+nym+n2、某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为(C)A. 1:2 B. 2:1 C. 3:2 D. 2:33、某次歌唱比赛,最后三名选手的成绩统计如表:比赛成绩/分比赛项目王晓丽李真林飞扬唱功989580音乐常识8090100综合知识8090100(1)若按算术平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?(2)若按6:3:1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?(3)若最后排名冠军是王晓丽,亚军是李真,季军是林飞扬,则权重可能是多少? 解:(1)王晓丽的平均分:13(98+80+80)=86,李真的平均分: 13(95+90+90)= 2753,林飞扬的平均分:13(80+100+100)= 2803,冠军是林飞扬、亚军是李真、季军王晓丽(2)王晓丽:=90.8,李真:=93,林飞扬:=88,冠军是李真、亚军王晓丽、季军林飞扬;(3)如果按
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清远市重点中学2026届高二化学第一学期期末联考试题含答案
- 心理健康安全知识培训课件
- 2025-2030年中国机场扫地机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030工业互联网平台发展现状及未来商业模式与投资机会分析报告
- 伦理体系课件
- 市民宗委面试题库精 编版
- 2025年医院感染管理竞赛试题(附答案)
- 2025年突发公共卫生事件试题(附答案)
- 2025年脑瘫儿童言语训练障碍的评估试题
- 人体消化系统课件
- 新职员工安全培训
- 机械通气:异常波形解读
- 专题11初高衔接之计算补充练习新高一数学暑假衔接与新课重难点预习(人教A版2019)
- 涉县中小学教师招聘考试真题2023年
- 干膜讲义完整版本
- DL-T+5220-2021-10kV及以下架空配电线路设计规范
- 2024年三方资金监管协议
- 桥梁智慧健康监测技术标准
- 产品代理协议标准版可打印
- DZ∕T 0206-2020 矿产地质勘查规范 高岭土、叶蜡石、耐火粘土(正式版)
- 职业学院康复治疗技术专业人才培养方案
评论
0/150
提交评论