九江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
九江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
九江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
九江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
九江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是( )A6,2B6,0)( 0,2C2,0)( 0,6D(0,22 双曲线4x2+ty24t=0的虚轴长等于( )AB2tCD43 设f(x)=asin(x+)+bcos(x+)+4,其中a,b,均为非零的常数,f(1988)=3,则f(2008)的值为( )A1B3C5D不确定4 设函数F(x)=是定义在R上的函数,其中f(x)的导函数为f(x),满足f(x)f(x)对于xR恒成立,则( )Af(2)e2f(0),fBf(2)e2f(0),fCf(2)e2f(0),fDf(2)e2f(0),f5 已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于( )A8B1C5D16 已知f(x)为偶函数,且f(x+2)=f(x),当2x0时,f(x)=2x;若nN*,an=f(n),则a2017等于( )A2017B8CD7 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件8 的大小关系为( )ABC.D9 如图是一个多面体的三视图,则其全面积为( )ABCD10满足集合M1,2,3,4,且M1,2,4=1,4的集合M的个数为( )A1B2C3D411如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A4 B5 C D12曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x5二、填空题13如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想14设,则的最小值为 。15已知z是复数,且|z|=1,则|z3+4i|的最大值为16已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为2,则直线的方程为_.17在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是18设函数f(x)=若ff(a),则a的取值范围是三、解答题19已知奇函数f(x)=(cR)()求c的值;()当x2,+)时,求f(x)的最小值20(本小题满分12分)已知在中,角所对的边分别为且 .()求角的大小;() 若,的面积为,求. 21在ABC中,内角A,B,C所对的边分别为a,b,c,已知sinAsinC(cosB+sinB)=0(1)求角C的大小; (2)若c=2,且ABC的面积为,求a,b的值22已知椭圆+=1(ab0)的离心率为,且a2=2b(1)求椭圆的方程;(2)直线l:xy+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由 23已知矩阵A,向量.求向量,使得A2.24已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示()求椭圆E的方程;()判断ABCD能否为菱形,并说明理由()当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值九江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:设此等比数列的公比为q,a+b+c=6,=6,b=当q0时, =2,当且仅当q=1时取等号,此时b(0,2;当q0时,b=6,当且仅当q=1时取等号,此时b6,0)b的取值范围是6,0)( 0,2故选:B【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题2 【答案】C【解析】解:双曲线4x2+ty24t=0可化为:双曲线4x2+ty24t=0的虚轴长等于故选C3 【答案】B【解析】解:f(1988)=asin(1988+)+bcos(1998+)+4=asin+bcos+4=3,asin+bcos=1,故f(2008)=asin(2008+)+bcos(2008+)+4=asin+bcos+4=1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题4 【答案】B【解析】解:F(x)=,函数的导数F(x)=,f(x)f(x),F(x)0,即函数F(x)是减函数,则F(0)F(2),F(0)Fe2f(0),f,故选:B5 【答案】B【解析】解:函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,a=20+1=1故选:B6 【答案】D【解析】解:f(x+2)=f(x),f(x+4)=f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4a2017=f(2017)=f(5044+1)=f(1),f(x)为偶函数,当2x0时,f(x)=2x,f(1)=f(1)=,a2017=f(1)=,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键7 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题8 【答案】B【解析】试题分析:由于,因为,所以,又,考点:实数的大小比较.9 【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,三棱柱的面积是32=6+,故选C【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小10【答案】B【解析】解:M1,2,4=1,4,1,4是M中的元素,2不是M中的元素M1,2,3,4,M=1,4或M=1,3,4故选:B11【答案】D【解析】试题分析:因为根据几何体的三视图可得,几何体为下图相互垂直,面面,根据几何体的性质得:,,所以最长为考点:几何体的三视图及几何体的结构特征12【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易二、填空题13【答案】14【答案】9【解析】由柯西不等式可知15【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题16【答案】【解析】解析: 设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即.17【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题18【答案】或a=1 【解析】解:当时,由,解得:,所以;当,f(a)=2(1a),02(1a)1,若,则,分析可得a=1若,即,因为212(1a)=4a2,由,得:综上得:或a=1故答案为:或a=1【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题三、解答题19【答案】 【解析】解:()f(x)是奇函数,f(x)=f(x),=,比较系数得:c=c,c=0,f(x)=x+;()f(x)=x+,f(x)=1,当x2,+)时,10,函数f(x)在2,+)上单调递增,f(x)min=f(2)=【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题20【答案】解:()由正弦定理及已知条件有, 即. 3分 由余弦定理得:,又,故. 6分 () 的面积为, 8分 又由()及得, 10分 由 解得或. 12分21【答案】 【解析】(本题满分为12分)解:(1)由题意得,sinA=sin(B+C),sinBcosC+sinCcosBsinCcosBsinBsinC=0,(2分)即sinB(cosCsinC)=0,sinB0,tanC=,故C=(6分)(2)ab=,ab=4,又c=2,(8分)a2+b22ab=4,a2+b2=8由,解得a=2,b=2(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题22【答案】【解析】解:(1)由题意得e=,a2=2b,a2b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0)联立直线y=x+m与椭圆的方程得,即3x2+2mx+m22=0,=(2m)243(m22)0,即m23,x1+x2=,所以x0=,y0=x0+m=,即M(,)又因为M点在圆x2+y2=5上,可得()2+()2=5,解得m=3与m23矛盾故实数m不存在【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题23【答案】【解析】A2.设.由A2,得,从而解得x-1,y2,所以24【答案】 【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3椭圆E的方程为=1(II)假设ABCD能为菱形,则OAOB,kOAkOB=1当ABx轴时,把x=1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时ABCD不能为菱形当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=kOAkOB=,假设=1,化为k2=,因此平行四边形ABCD不可能是菱形综上可得:平行四边形ABCD不可能是菱形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论