陵城区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
陵城区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
陵城区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
陵城区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
陵城区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷陵城区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点2 过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则AOF的面积为( )ABCD23 设等比数列an的公比q=2,前n项和为Sn,则=( )A2B4CD4 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限5 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD6 集合的真子集共有( )A个 B个 C个 D个7 函数f(x)=eln|x|+的大致图象为( )ABCD8 已知f(x)=4+ax1的图象恒过定点P,则点P的坐标是( )A(1,5)B(1,4)C(0,4)D(4,0)9 已知定义在R上的可导函数y=f(x)是偶函数,且满足xf(x)0, =0,则满足的x的范围为( )A(,)(2,+)B(,1)(1,2)C(,1)(2,+)D(0,)(2,+)10函数y=|a|x(a0且a1)的图象可能是( )ABCD11已知幂函数y=f(x)的图象过点(,),则f(2)的值为( )ABC2D212已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD二、填空题13设抛物线的焦点为,两点在抛物线上,且,三点共线,过的中点作轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .14在中,角、所对应的边分别为、,若,则_15(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值16如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则PAC在该正方体各个面上的射影可能是17若曲线f(x)=aex+bsinx(a,bR)在x=0处与直线y=1相切,则ba=18设函数有两个不同的极值点,且对不等式恒成立,则实数的取值范围是 三、解答题19定义在R上的增函数y=f(x)对任意x,yR都有f(x+y)=f(x)+f(y),则(1)求f(0); (2)证明:f(x)为奇函数;(3)若f(k3x)+f(3x9x2)0对任意xR恒成立,求实数k的取值范围 20已知椭圆:(ab0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M(I)求椭圆的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆的右焦点F且与直线 x2y2=0相切?若存在,求出直线l的方程;若不存在,请说明理由 21已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:22cos4sin+6=0(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求C1MN的面积 22已知函数f(x)=|xm|,关于x的不等式f(x)3的解集为1,5(1)求实数m的值;(2)已知a,b,cR,且a2b+2c=m,求a2+b2+c2的最小值 23已知等差数列an,等比数列bn满足:a1=b1=1,a2=b2,2a3b3=1()求数列an,bn的通项公式;()记cn=anbn,求数列cn的前n项和Sn24已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围陵城区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.2 【答案】B【解析】解:抛物线y2=4x的准线l:x=1|AF|=3,点A到准线l:x=1的距离为31+xA=3xA=2,yA=2,AOF的面积为=故选:B【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键3 【答案】C【解析】解:由于q=2,;故选:C4 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题5 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题6 【答案】C【解析】考点:真子集的概念.7 【答案】C【解析】解:f(x)=eln|x|+f(x)=eln|x|f(x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x0+时,y+,故排除B 故选:C8 【答案】A【解析】解:令x1=0,解得x=1,代入f(x)=4+ax1得,f(1)=5,则函数f(x)过定点(1,5)故选A9 【答案】D【解析】解:当x0时,由xf(x)0,得f(x)0,即此时函数单调递减,函数f(x)是偶函数,不等式等价为f(|),即|,即或,解得0x或x2,故x的取值范围是(0,)(2,+)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键10【答案】D【解析】解:当|a|1时,函数为增函数,且过定点(0,1),因为011,故排除A,B当|a|1时且a0时,函数为减函数,且过定点(0,1),因为10,故排除C故选:D11【答案】A【解析】解:设幂函数y=f(x)=x,把点(,)代入可得=,=,即f(x)=,故f(2)=,故选:A12【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D二、填空题13【答案】2 【解析】由题意,得,准线为,设、,直线的方程为,代入抛物线方程消去,得,所以,又设,则,所以,所以因为,解得,所以点的横坐标为214【答案】【解析】因为,所以,所以,所以答案: 15【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.16【答案】 【解析】解:由所给的正方体知,PAC在该正方体上下面上的射影是,PAC在该正方体左右面上的射影是,PAC在该正方体前后面上的射影是故答案为:17【答案】2 【解析】解:f(x)=aex+bsinx的导数为f(x)=aex+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=1相切,可得a+b=0,且ae0+bsin0=a=1,解得a=1,b=1,则ba=2故答案为:218【答案】【解析】试题分析:因为,故得不等式,即,由于,令得方程,因 , 故,代入前面不等式,并化简得,解不等式得或,因此, 当或时, 不等式成立,故答案为. 考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111三、解答题19【答案】 【解析】解:(1)在f(x+y)=f(x)+f(y)中,令x=y=0可得,f(0)=f(0)+f(0),则f(0)=0,(2)令y=x,得f(xx)=f(x)+f(x),又f(0)=0,则有0=f(x)+f(x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,f(k3x)f(3x9x2)=f(3x+9x+2),即有k3x3x+9x+2,得,又有,即有最小值21,所以要使f(k3x)+f(3x9x2)0恒成立,只要使即可,故k的取值范围是(,21) 20【答案】 【解析】解:()依题意得,解得,所以所求的椭圆方程为;()假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x2y2=0相切,因为以AM为直径的圆C过点F,所以AFM=90,即AFAM,又=1,所以直线MF的方程为y=x2,由消去y,得3x28x=0,解得x=0或x=,所以M(0,2)或M(,),(1)当M为(0,2)时,以AM为直径的圆C为:x2+y2=4,则圆心C到直线x2y2=0的距离为d=,所以圆C与直线x2y2=0不相切;(2)当M为(,)时,以AM为直径的圆心C为(),半径为r=,所以圆心C到直线x2y2=0的距离为d=r,所以圆心C与直线x2y2=0相切,此时kAF=,所以直线l的方程为y=+2,即x+2y4=0,综上所述,存在满足条件的直线l,其方程为x+2y4=0【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在21【答案】 【解析】解:(1),将其代入C1得:,圆C1的直角坐标方程为:由直线l1:(t为参数),消去参数可得:y=x,可得(R)直线l1的极坐标方程为:(R)(2),可得,【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题 22【答案】 【解析】解:(1)|xm|33xm3m3xm+3,由题意得,解得m=2;(2)由(1)可得a2b+2c=2,由柯西不等式可得(a2+b2+c2)12+(2)2+22(a2b+2c)2=4,a2+b2+c2当且仅当,即a=,b=,c=时等号成立,a2+b2+c2的最小值为【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题 23【答案】 【解析】解:(I)设等差数列an的公差为d,等比数列bn的公比为q:a1=b1=1,a2=b2,2a3b3=11+d=q,2(1+2d)q2=1,解得或an=1,bn=1;或an=1+2(n1)=2n1,bn=3n1(II)当时,cn=anbn=1,Sn=n当时,cn=anbn=(2n1)3n1,Sn=1+33+532+(2n1)3n1,3Sn=3+332+(2n3)3n1+(2n1)3n,2Sn=1+2(3+32+3n1)(2n1)3n=1(2n1)3n=(22n)3n2,Sn=(n1)3n+1【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题24【答案】 【解析】解:(1)函数f(x)的定义域为(0,+),f(x)=k=0,x=,由ln1+1=0,可得k=1;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论