龙华区实验中学2018-2019学年上学期高二数学12月月考试题含解析(1)_第1页
龙华区实验中学2018-2019学年上学期高二数学12月月考试题含解析(1)_第2页
龙华区实验中学2018-2019学年上学期高二数学12月月考试题含解析(1)_第3页
龙华区实验中学2018-2019学年上学期高二数学12月月考试题含解析(1)_第4页
龙华区实验中学2018-2019学年上学期高二数学12月月考试题含解析(1)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷龙华区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知集合M=x|x21,N=x|x0,则MN=( )ABx|x0Cx|x1Dx|0x1可2 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,则a10+b10=( )A28B76C123D1993 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan354 若函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,则该函数的最大值为( )A5B4C3D25 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44956 sin570的值是( )ABCD7 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆被双曲线截得劣弧长为,则双曲线的离心率为( )A B C D8 设方程|x2+3x3|=a的解的个数为m,则m不可能等于( )A1B2C3D49 如果(mR,i表示虚数单位),那么m=( )A1B1C2D010极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,则|PQ|的最小值为( )A1BCD211已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点12设a,b为实数,若复数,则ab=( )A2B1C1D2二、填空题13当时,4xlogax,则a的取值范围14= .15设数列an的前n项和为Sn,已知数列Sn是首项和公比都是3的等比数列,则an的通项公式an=16将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是17函数的定义域是,则函数的定义域是_.11118等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_三、解答题19(本小题满分12分)设函数.(1)当时,求不等式的解集;(2)当时,恒成立,求实数的取值范围20已知x2y2+2xyi=2i,求实数x、y的值21如图,过抛物线C:x2=2py(p0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=4()p的值;()R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求MNT的面积的最小值22武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率23已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.24某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少 am2;已知旧住房总面积为32am2,每年拆除的数量相同()若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(),求前n(1n10且nN)年新建住房总面积Sn龙华区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:由已知M=x|1x1,N=x|x0,则MN=x|0x1,故选D【点评】此题是基础题本题属于以不等式为依托,求集合的交集的基础题,2 【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项继续写出此数列为1,3,4,7,11,18,29,47,76,123,第十项为123,即a10+b10=123,故选C3 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题4 【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x2,2,函数的最大值为:5故选:A【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力5 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题6 【答案】B【解析】解:原式=sin(720150)=sin150=故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键7 【答案】B 考点:双曲线的性质8 【答案】A【解析】解:方程|x2+3x3|=a的解的个数可化为函数y=|x2+3x3|与y=a的图象的交点的个数,作函数y=|x2+3x3|与y=a的图象如下,结合图象可知,m的可能值有2,3,4;故选A9 【答案】A【解析】解:因为,而(mR,i表示虚数单位),所以,m=1故选A【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题10【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1故选:A【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查11【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.12【答案】C【解析】解:,因此ab=1故选:C二、填空题13【答案】 【解析】解:当时,函数y=4x的图象如下图所示若不等式4xlogax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)y=logax的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=logax的图象对应的底数a应满足a1故答案为:(,1)14【答案】【解析】试题分析:原式=。考点:指、对数运算。15【答案】 【解析】解:数列Sn是首项和公比都是3的等比数列,Sn =3n故a1=s1=3,n2时,an=Sn sn1=3n3n1=23n1,故an=【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an的关系,属于中档题16【答案】 【解析】解:设剪成的小正三角形的边长为x,则:S=,(0x1)令3x=t,t(2,3),S=,当且仅当t=即t=2时等号成立;故答案为:17【答案】【解析】考点:函数的定义域.18【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n1三、解答题19【答案】(1);(2)【解析】试题分析:(1)由于原不等式的解集为;(2)由设,原命题转化为又且考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为,解得;第二小题利用数学结合思想和转化思想,将原命题转化为 ,进而求得:20【答案】 【解析】解:由复数相等的条件,得(4分)解得或(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题21【答案】 【解析】解:()由题意设MN:y=kx+,由,消去y得,x22pkxp2=0(*)由题设,x1,x2是方程(*)的两实根,故p=2;()设R(x3,y3),Q(x4,y4),T(0,t),T在RQ的垂直平分线上,|TR|=|TQ|得,又,即4(y3y4)=(y3+y42t)(y4y3)而y3y4,4=y3+y42t又y3+y4=1,故T(0,)因此,由()得,x1+x2=4k,x1x2=4,=因此,当k=0时,SMNT有最小值3【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题22【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力23【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d24d=0,解得d=0或4,当d=0时,an=2,当d=4时,an=2+(n1)4=4n2。(2)当an=2时,Sn=2n,显然2n60n+800,此时不存在正整数n,使得Sn60n+800成立,当an=4n2时,Sn=2n2,令2n260n+800,即n230n4000,解得n40,或n10(舍去),此时存在正整数n,使得Sn60n+800成立,n的最小值为41,综上,当an=2时,不存在满足题意的正整数n,当an=4n2时,存在满足题意的正整数n,最小值为4124【答案】 【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a设每年

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论