




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学压轴题1如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数关系式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0t3),直线AB与该抛物线的交点为N(如图2所示). 当t=时,判断点P是否在直线ME上,并说明理由; 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由解:(1)(2)点P不在直线ME上;依题意可知:P(,),N(,)当0t3时,以P、N、C、D为顶点的多边形是四边形PNCD,依题意可得:=+=+=抛物线的开口方向:向下,当=,且0t3时,=当时,点P、N都重合,此时以P、N、C、D为顶点的多边形是三角形依题意可得,=3综上所述,以P、N、C、D为顶点的多边形面积S存在最大值 2已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3)(1)求此函数的解析式及图象的对称轴;(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动设运动时间为t秒当t为何值时,四边形ABPQ为等腰梯形;设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值解:(1)二次函数的图象经过点C(0,-3),c =-3将点A(3,0),B(2,-3)代入得解得:a=1,b=-2配方得:,所以对称轴为x=1 (2) 由题意可知:BP= OQ=0.1t点B,点C的纵坐标相等,BCOA过点B,点P作BDOA,PEOA,垂足分别为D,E要使四边形ABPQ为等腰梯形,只需PQ=AB即QE=AD=1又QE=OEOQ=(2-0.1t)-0.1t=2-0.2t,2-0.2t=1解得t=5即t=5秒时,四边形ABPQ为等腰梯形设对称轴与BC,x轴的交点分别为F,G对称轴x=1是线段BC的垂直平分线,BF=CF=OG=1又BP=OQ,PF=QG又PMF=QMG,MFPMGQMF=MG点M为FG的中点,S=,=由=S=又BC=2,OA=3,点P运动到点C时停止运动,需要20秒0t20 当t=20秒时,面积S有最小值33如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t。求:(1)C的坐标为 ;(2)当t为何值时,ANO与DMR相似?(3)HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的最大值。解:(1)(,);(2)当MDR45时,2,点(2,0)当DRM45时,3,点(3,0)(3)();(1分)()当时,当时,当时, 4如图11,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式(2)连结PO、PC,并把POC沿CO翻折,得到四边形POPC, 那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.解:(1)将B、C两点的坐标代入得解得:所以二次函数的表达式为: (2)存在点P,使四边形POPC为菱形设P点坐标为(x,),PP交CO于E,若四边形POPC是菱形,则有PCPO连结PP 则PECO于E,OE=EC= 解得=,=(不合题意,舍去)P点的坐标为(,)(3)过点P作轴的平行线与BC交于点Q,与OB交于点F,设P(x,),易得,直线BC的解析式为,则Q点的坐标为(x,x3).=当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积 5如图,直线y = -x-1与抛物线y=ax2+bx-4都经过点A(-1, 0)、B(3, -4)(1)求抛物线的解析式;(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在请说明理由解:(1)由题知,解得a=1, b= -3 ,抛物线解析式为y=x2-3x-4 (2)设点P坐标(m, -m-1),则E点坐标(m, m2-3m-4)线段PE的长度为:-m-1- (m2-3m-4)= -m2+2m+3 = -(m-1)2+4由二次函数性质知当m=1时,函数有最大值4,所以线段PE长度的最大值为4。 (3)由(2)知P(1, -2)过P作PC的垂线与x轴交于F,与抛物线交于Q, 设AC与y轴交于G,则G(0, -1),OG=1,又可知A(-1, 0) 则OA=1,OAG是等腰直角三角形,OAG=45oPAF是等腰直角三角形,由对称性知F(3, 0)设直线PF的解析式为y=k1x+b1,则,解之得k1=1, b1= -3,直线PF为y=x-3由解得 Q1(2+, -1) Q2(2-, -1)过点C作PC的垂线与x轴交于H,与抛物线交点为Q,由HAC=45o,知ACH是等腰直角三角形,由对称性知H坐标为(7, 0),设直线CH的解析式为y=k2x+b2,则,解之得k2=1, b2= -7,直线CH的解析式为y=x-7解方程组得 当Q(3, -4)时,Q与C重合,PQC不存在,所以Q点坐标为(1, -6)综上所述在抛物线上存在点Q1(2+, -1)、Q2(2-, -1)、Q3(1, -6)使得PCQ是以PC为直角边的直角三角形。6如图,O的半径为1,点P是O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DEAB于点E,以点D为圆心、DE长为半径作D,分别过点A、B作D的切线,两条切线相交于点C(1)求弦AB的长;(2)判断ACB是否为定值,若是,求出ACB的大小;否则,请说明理由;(3)记ABC的面积为S,若4,求ABC的周长.解:(1)连接OA,取OP与AB的交点为F,则有OA1弦AB垂直平分线段OP,OFOP,AFBF在RtOAF中,AF,AB2AF(2)ACB是定值.理由:由(1)易知,AOB120,因为点D为ABC的内心,所以,连结AD、BD,则CAB2DAE,CBA2DBA,因为DAEDBAAOB60,所以CABCBA120,所以ACB60;(3)记ABC的周长为l,取AC,BC与D的切点分别为G,H,连接DG,DC,DH,则有DGDHDE,DGAC,DHBC.ABDEBCDHACDG(ABBCAC) DElDE4,4,l8DE.CG,CH是D的切线,GCDACB30,在RtCGD中,CGDE,CHCGDE又由切线长定理可知AGAE,BHBE,lABBCAC22DE8DE,解得DE,ABC的周长为7 如图,过A(8,0)、B(0,)两点的直线与直线交于点C平行于轴的直线从原点O出发,以每秒1个单位长度的速度沿轴向右平移,到C点时停止;分别交线段BC、OC于点D、E,以DE为边向左侧作等边DEF,设DEF与BCO重叠部分的面积为S(平方单位),直线的运动时间为t(秒)(1)直接写出C点坐标和t的取值范围; (2)求S与t的函数关系式;(3)设直线与轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由解:(1)C(4,),的取值范围是:04 (2)D点的坐标是(,),E的坐标是(,)DE=-= 等边DEF的DE边上的高为: 当点F在BO边上时:=,=3 当0 PQ时,则点P在线段OC上, CMPQ,CM = 2PQ ,点M纵坐标为点Q纵坐标的2倍,即2 = 2(+1),解得x = 0 ,t = + 0 2 = 2 2)当CM PQ时,则点P在OC的延长线上,CMPQ,CM = PQ,点Q纵坐标为点M纵坐标的2倍,即+1=22,解得: x = .当x = 时,得t = 2 = 8 , ,当x =时, 得t =8. 9如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0t6)s.(1)求OAB的度数.(2)以OB为直径的O与AB交于点M,当t为何值时,PM与O相切?(3)写出PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.(4)是否存在APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.解:(1)在RtAOB中:tanOAB=,OAB=30(2)如图10,连接OP,OM. 当PM与O相切时,有PM O=PO O=90, PM OPO O由(1)知OBA=60OM= OBOBM是等边三角形B OM=60可得O OP=M OP=60OP= O OtanO OP =6tan60=又OP=tt=,t=3即:t=3时,PM与O相切.(3)如图9,过点Q作QEx于点E BAO=30,AQ=4t, QE=AQ=2t AE=AQcosOAB=4tOE=OA-AE=-t Q点的坐标为(-t,2t) SPQR= SOAB -SOPR -SAPQ -SBRQ = = = () 当t=3时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西工程学院《仪器机械学基础》2023-2024学年第二学期期末试卷
- 长春医学高等专科学校《建筑信息建模技术与管理》2023-2024学年第二学期期末试卷
- 天津理工大学中环信息学院《火电厂烟气净化Ⅱ》2023-2024学年第二学期期末试卷
- 河北轨道运输职业技术学院《野生动植物保护与管理》2023-2024学年第二学期期末试卷
- 西安高新科技职业学院《公共关系学》2023-2024学年第二学期期末试卷
- 大理护理职业学院《植物资源化学》2023-2024学年第二学期期末试卷
- 2024年核磁共振岩心测试仪投资申请报告代可行性研究报告
- 2024年高性能铁氧体一次磁粉项目投资申请报告代可行性研究报告
- 安全教育说课稿
- 2025年四川泸州自贸区龙驰商务秘书服务有限公司招聘笔试参考题库含答案解析
- 草皮铺种施工方案
- 中医养生穴位保健按摩课件
- 肩关节镜下肩袖修补术的护理查房ppt
- 回旋镖运动轨迹的模拟
- 《康复医学》PPT课件(PPT 105页)
- (完整)高血压病历以及全套临床病历
- 标准溶液配制与标定原始记录(氢氧化钠)
- 光学零件工艺学
- 内墙腻子施工技术交底
- 自粘聚合物改性沥青防水卷材施工方案5完整
- 浙工大 《大学英语》专升本 复习试卷 及答案
评论
0/150
提交评论