




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷临朐县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若则的值为( ) A8 B C2 D 2 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日3 已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),(x)=cos(cosx)在x,上的图象如图,则函数与序号匹配正确的是( )Af(x),g(x),h(x),(x)Bf(x),(x),g(x),h(x)Cg(x),h(x),f(x),(x)Df(x),h(x),g(x),(x)4 下列函数中,既是偶函数又在单调递增的函数是( )A B C D5 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )Ai21Bi11Ci21Di116 已知双曲线kx2y2=1(k0)的一条渐近线与直线2x+y3=0垂直,则双曲线的离心率是( )ABC4D7 已知命题p:xR,2x3x;命题q:xR,x3=1x2,则下列命题中为真命题的是( )ApqBpqCpqDpq8 已知向量=(1,1,0),=(1,0,2)且k+与2互相垂直,则k的值是( )A1BCD9 设函数f(x)=则不等式f(x)f(1)的解集是( )A(3,1)(3,+)B(3,1)(2,+)C(1,1)(3,+)D(,3)(1,3)10二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力11已知在数轴上0和3之间任取一实数,则使“”的概率为( )A B C D12下列各组函数中,表示同一函数的是( )A、x与 B、 与 C、与 D、与二、填空题13在(x2)9的二项展开式中,常数项的值为14在数列中,则实数a=,b=15=16已知复数,则1+z50+z100=17若函数y=ln(2x)为奇函数,则a=18某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种三、解答题19已知椭圆G: =1(ab0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(3,2)()求椭圆G的方程;()求PAB的面积20已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和21(本小题满分12分)已知数列的各项均为正数,.()求数列的通项公式;()求数列的前项和22【启东中学2018届高三上学期第一次月考(10月)】设,函数.(1)证明在上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O是坐标原点),证明:23若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值24设集合A=x|0xm3,B=x|x0或x3,分别求满足下列条件的实数m的取值范围(1)AB=;(2)AB=B临朐县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】试题分析:,故选B。考点:分段函数。2 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础3 【答案】 D【解析】解:图象是关于原点对称的,即所对应函数为奇函数,只有f(x);图象恒在x轴上方,即在,上函数值恒大于0,符合的函数有h(x)和(x),又图象过定点(0,1),其对应函数只能是h(x),那图象对应(x),图象对应函数g(x)故选:D【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题4 【答案】C【解析】试题分析:函数为奇函数,不合题意;函数是偶函数,但是在区间上单调递减,不合题意;函数为非奇非偶函数。故选C。考点:1.函数的单调性;2.函数的奇偶性。5 【答案】D【解析】解:S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i10,应不满足条件,继续循环当i11,应满足条件,退出循环填入“i11”故选D6 【答案】A【解析】解:由题意双曲线kx2y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=x故=,k=,可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证7 【答案】B【解析】解:因为x=1时,2131,所以命题p:xR,2x3x为假命题,则p为真命题令f(x)=x3+x21,因为f(0)=10,f(1)=10所以函数f(x)=x3+x21在(0,1)上存在零点,即命题q:xR,x3=1x2为真命题则pq为真命题故选B8 【答案】D【解析】解: =(1,1,0),=(1,0,2),k+=k(1,1,0)+(1,0,2)=(k1,k,2),2=2(1,1,0)(1,0,2)=(3,2,2),又k+与2互相垂直,3(k1)+2k4=0,解得:k=故选:D【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题9 【答案】A【解析】解:f(1)=3,当不等式f(x)f(1)即:f(x)3如果x0 则 x+63可得 x3,可得3x0如果 x0 有x24x+63可得x3或 0x1综上不等式的解集:(3,1)(3,+)故选A10【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A11【答案】C【解析】试题分析:由得,由几何概型可得所求概率为.故本题答案选C.考点:几何概型12【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:定义域相同,对应法则相同。选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。故选C。考点:同一函数的判定。二、填空题13【答案】84 【解析】解:(x2)9的二项展开式的通项公式为 Tr+1=(1)rx183r,令183r=0,求得r=6,可得常数项的值为T7=84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题14【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用15【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题16【答案】i 【解析】解:复数,所以z2=i,又i2=1,所以1+z50+z100=1+i25+i50=1+i1=i;故答案为:i【点评】本题考查了虚数单位i的性质运用;注意i2=117【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:418【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏三、解答题19【答案】 【解析】解:()由已知得,c=,解得a=,又b2=a2c2=4,所以椭圆G的方程为()设直线l的方程为y=x+m,由得4x2+6mx+3m212=0设A,B的坐标分别为(x1,y1),(x2,y2)(x1x2),AB的中点为E(x0,y0),则x0=,y0=x0+m=,因为AB是等腰PAB的底边,所以PEAB,所以PE的斜率k=,解得m=2此时方程为4x2+12x=0解得x1=3,x2=0,所以y1=1,y2=2,所以|AB|=3,此时,点P(3,2)到直线AB:y=x+2距离d=,所以PAB的面积s=|AB|d=20【答案】 【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设Tr+1为常数项,则:Tr+1=C9r=C9r2r,由r=0,得r=3,常数项为:C9323=672;(2)令x=1,得(1+2)9=39【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题21【答案】(本小题满分12分)解: ()由得,是等差数列,公差为4,首项为4, (3分),由得 (6分)(), (9分) 数列的前项和为 (12分)22【答案】(1)在上有且只有一个零点(2)证明见解析【解析】试题分析:试题解析:(1),在上为增函数,又,即,由零点存在性定理可知,在上为增函数,且,在上仅有一个零点。(2),设点,则,在点处的切线与轴平行,点处切线与直线平行,点处切线的斜率,又题目需证明,即,则只需证明,即。令,则,易知,当时,单调递减,当时,单调递增,即,得证。23【答案】 【解析】解:由题意可得:当a1时,函数f(x)在区间1,2上单调递增,f(2)f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国晚籼稻项目创业计划书
- 中国统一管理(utm)项目创业计划书
- 中国吉林省生物农业项目创业计划书
- 中国肉干项目创业计划书
- 中国可视对讲机项目创业计划书
- 中国近红外脑功能成像系统(FNIRS) 项目创业计划书
- 中国光无线通信项目创业计划书
- 2025标准装修合同范本
- 2025年幼儿园联盟与物业消防服务合同范本标准版
- 广西饲料项目创业计划书
- 某有限公司业务员提成管理制度方案范例(3篇)
- 视频剪辑动画效果与视觉传达研究
- R1快开门式压力容器操作考试题库(含答案)
- 国开电大本科《行政法与行政诉讼法》期末纸质考试总题库2024版
- 专题05 地质地貌-【好题汇编】十年(2015-2024)高考地理真题分类汇编(原卷版)
- 项目劳务招投标管理办法
- 《无人机飞行操控技术》项目5 无人直升机飞行操控
- 国开(陕西)2024年秋《刑法学#》形考作业1-4答案
- 行政职业能力测验公务员考试行测试卷及答案指导(2025年)
- 2024年式电动出租车租赁合同
- 宾馆转让协议范本
评论
0/150
提交评论