麦积区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
麦积区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
麦积区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
麦积区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
麦积区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷麦积区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图,空间四边形OABC中,点M在OA上,且,点N为BC中点,则等于( )ABCD2 函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D93 复数z=(其中i是虚数单位),则z的共轭复数=( )AiBiC +iD +i4 O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则POF的面积为( )A1BCD25 将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是( )ABCD6 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+7 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=8 在等差数列an中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项的和是( )A13B26C52D569 若直线与曲线:没有公共点,则实数的最大值为( )A1BC1D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力10若双曲线=1(a0,b0)的渐近线与圆(x2)2+y2=2相切,则此双曲线的离心率等于( )ABCD211给出下列命题:在区间(0,+)上,函数y=x1,y=,y=(x1)2,y=x3中有三个是增函数;若logm3logn30,则0nm1;若函数f(x)是奇函数,则f(x1)的图象关于点A(1,0)对称;若函数f(x)=3x2x3,则方程f(x)=0有2个实数根其中假命题的个数为( )A1B2C3D412如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD二、填空题13某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)14若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 15为了近似估计的值,用计算机分别产生90个在1,1的均匀随机数x1,x2,x90和y1,y2,y90,在90组数对(xi,yi)(1i90,iN*)中,经统计有25组数对满足,则以此估计的值为16若等比数列an的前n项和为Sn,且,则=17小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米(太阳光线可看作为平行光线) 18已知函数y=f(x),xI,若存在x0I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0I,使得f(f(x0)=x0,则称x0为函数y=f(x)的稳定点则下列结论中正确的是(填上所有正确结论的序号),1是函数g(x)=2x21有两个不动点;若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;函数g(x)=2x21共有三个稳定点;若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同三、解答题19已知Sn为数列an的前n项和,且满足Sn=2ann2+3n+2(nN*)()求证:数列an+2n是等比数列;()设bn=ansin,求数列bn的前n项和;()设Cn=,数列Cn的前n项和为Pn,求证:Pn 20在ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB(1)求B;(2)若b=2,求ABC面积的最大值21中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率22(选做题)已知f(x)=|x+1|+|x1|,不等式f(x)4的解集为M(1)求M;(2)当a,bM时,证明:2|a+b|4+ab| 23(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下: 销售量/千克()求频率分布直方图中的的值,并估计每天销售量的中位数;()这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值24设函数f(x)=x2ex(1)求f(x)的单调区间;(2)若当x2,2时,不等式f(x)m恒成立,求实数m的取值范围麦积区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解: =;又,故选B【点评】本题考查了向量加法的几何意义,是基础题2 【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题3 【答案】C【解析】解:z=,=故选:C【点评】本题考查了复数代数形式的乘除运算,是基础题4 【答案】C【解析】解:由抛物线方程得准线方程为:y=1,焦点F(0,1),又P为C上一点,|PF|=4,可得yP=3,代入抛物线方程得:|xP|=2,SPOF=|0F|xP|=故选:C5 【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin2(x)=sin(2x);考察选项不难发现:当x=时,sin(2)=0;(,0)就是函数的一个对称中心坐标故选:D【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型6 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目7 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项8 【答案】B【解析】解:由等差数列的性质可得:a3+a5=2a4,a7+a13=2a10,代入已知可得32a4+23a10=24,即a4+a10=4,故数列的前13项之和S13=26故选B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题9 【答案】C【解析】令,则直线:与曲线:没有公共点,等价于方程在上没有实数解假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故又时,知方程在上没有实数解,所以的最大值为,故选C 10【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x2)2+y2=2的圆心(2,0),半径为,双曲线=1(a0,b0)的渐近线与圆(x2)2+y2=2相切,可得:,可得a2=b2,c=a,e=故选:B【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力11【答案】 A【解析】解:在区间(0,+)上,函数y=x1,是减函数函数y=为增函数函数y=(x1)2在(0,1)上减,在(1,+)上增函数y=x3是增函数有两个是增函数,命题是假命题;若logm3logn30,则,即lgnlgm0,则0nm1,命题为真命题;若函数f(x)是奇函数,则其图象关于点(0,0)对称,f(x1)的图象关于点A(1,0)对称,命题是真命题;若函数f(x)=3x2x3,则方程f(x)=0即为3x2x3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题为真命题假命题的个数是1个故选:A【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题12【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;所求的概率为=故选D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单二、填空题13【答案】24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础14【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=015【答案】 【解析】设A(1,1),B(1,1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题16【答案】 【解析】解:等比数列an的前n项和为Sn,且,S4=5S2,又S2,S4S2,S6S4成等比数列,(S4S2)2=S2(S6S4),(5S2S2)2=S2(S65S2),解得S6=21S2,=故答案为:【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题17【答案】3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子设BC=x,则根据题意=,AB=x,在AE=ABBE=x1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3【点评】本题主要考查了解三角形的实际应用解题的关键是建立数学模型,把实际问题转化为数学问题18【答案】 【解析】解:对于,令g(x)=x,可得x=或x=1,故正确;对于,因为f(x0)=x0,所以f(f(x0)=f(x0)=x0,即f(f(x0)=x0,故x0也是函数y=f(x)的稳定点,故正确;对于,g(x)=2x21,令2(2x21)21=x,因为不动点必为稳定点,所以该方程一定有两解x=,1,由此因式分解,可得(x1)(2x+1)(4x2+2x1)=0还有另外两解,故函数g(x)的稳定点有,1,其中是稳定点,但不是不动点,故错误;对于,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0)=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故正确故答案为:【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力三、解答题19【答案】 【解析】(I)证明:由Sn=2ann2+3n+2(nN*),当n2时,an=SnSn1=2an2an12n+4,变形为an+2n=2an1+2(n1),当n=1时,a1=S1=2a11+3+2,解得a1=4,a1+2=2,数列an+2n是等比数列,首项为2,公比为2;(II)解:由(I)可得an=22n12n=2n2nbn=ansin=(2n+2n), =(1)n,bn=(1)n+1(2n+2n)设数列bn的前n项和为Tn当n=2k(kN*)时,T2k=(222+2324+22k122k)+2(12+34+2k12k)=2k=n当n=2k1时,T2k1=2k(22k4k)=+n+1+2n+1=+n+1(III)证明:Cn=,当n2时,cn数列Cn的前n项和为Pn=,当n=1时,c1=成立综上可得:nN*,【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题20【答案】 【解析】(本小题满分12分)解:(1)bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,B=(2)ABC的面积由已知及余弦定理,得又a2+c22ac,故ac4,当且仅当a=c时,等号成立因此ABC面积的最大值为21【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为: p2;若前9个元素有5个正常工作,则它的概率为:此时后两个元件至少有一个正常工作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论