




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题22 正弦定理和余弦定理(押题专练)2017年高考数学(理)一轮复习精品资料1已知ABC中,内角A,B,C所对边分别为a,b,c,若A,b2acosB,c1,则ABC的面积等于()A. B.C. D.2在ABC中,角A,B,C所对的边分别为a,b,c,若C2B,则为()A2sinC B2cosBC2sinB D2cosC解析:由于C2B,故sinCsin2B2sinBcosB,所以2cosB,由正弦定理可得2cosB,故选B。答案:B3已知ABC的内角A,B,C的对边分别为a,b,c,且,则B()A. B.C. D.解析:由sinA,sinB,sinC,代入整理得:c2b2aca2,所以a2c2b2ac,即cosB,所以B。答案:C4在ABC中,若lg(ac)lg(ac)lgblg,则A()A90 B60C120 D1505在ABC中,内角A,B,C所对的边分别是a,b,c.若3a2b,则的值为()A B.C1 D.解析:由正弦定理可得221221,因为3a2b,所以,所以221。答案:D6在ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinAacosC,则sinAsinB的最大值是()A1 B.C. D3解析:由csinAacosC,所以sinCsinAsinAcosC,即sinCcosC,所以tanC,C,AB,所以sinAsinBsinsinBsin,0B,B,当B,即B时,sinAsinB的最大值为.故选C。答案:C7.在ABC中,若A=,B=,BC=3,则AC=()A.B.C.2D.4【答案】C。【解析】由正弦定理可得:=,即有AC=2.8.在ABC中,若a2+b2c2,则ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】由余弦定理:a2+b2-2abcosC=c2,因为a2+b2c2,所以2abcosCbB.abC.a=bD.a与b的大小关系不能确定【答案】A【解析】由余弦定理得2a2=a2+b2-2abcos120,b2+ab-a2=0,即+-1=0,=1,故ba.11.在ABC中,a=15,b=10,A=60,则cosB=.【解析】由正弦定理可得=,所以sinB=,再由ba,可得B为锐角,所以cosB=.答案:12.在ABC中,三个内角A,B,C所对的边分别为a,b,c,若sin2A+sin2C-sin2B=sinAsinC,则B=.【解析】在ABC中,因为sin2A+sin2C-sin2B=sinAsinC,所以利用正弦定理得:a2+c2-b2=ac,所以cosB=,所以B=.答案:13.ABC中,点D是BC上的点,AD平分BAC,BD=2DC.(1)求.(2)若BAC=60,求B.【解析】(1)如图,由正弦定理得:=,=,因为AD平分BAC,BD=2DC,所以=.(2)因为C=180-(BAC+B),BAC=60,所以sinC=sin(BAC+B)=cosB+sinB,由(1)知2sinB=sinC,所以tanB=,即B=30.14.在ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.(1)求cosB的值.(2)若=2,且b=2,求a和c的值.【解析】(1)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA0,因此cosB=.(2)由=2,可得accosB=2,又cosB=,故ac=6,由b2=a2+c2-2accosB,可得a2+c2=12,所以(a-c)2=0,即a=c,所以a=c=.15.在ABC中,角A,B,C所对的边分别为a,b,c,点(a,b)在直线x(sinA-sinB)+ysinB=csinC上.(1)求角C的值.(2)若2cos2-2sin2=,且AB,求. (2)因为2cos2-2sin2=1+cosA-1+cosB=cosA+cos=cosA+sinA=sin=,因为A+B=,且AB,所以0A,所以A+,即A+=,所以A=,B=,C=,则=.16.如图,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cosCAD的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧港口自动化装卸设备智能搬运机器人市场前景预测报告
- 2025年休闲食品健康化转型与食品添加剂替代品研发报告
- 【高中语文】《为了忘却的记念》课件+统编版高二语文选择性必修中册+
- 2025年汽车零部件再制造产业市场潜力与增长动力分析报告
- 2025年金融租赁公司业务创新案例分析及风险防范策略报告
- 融合创新视角下2025年广播影视行业媒体融合的跨界营销策略分析报告
- 2025年化妆品零售行业自有品牌策略与竞争优势研究报告
- 2025年在线教育平台用户满意度提升策略与教育行业政策解读报告
- 护理员培训工作管理制度
- 不合格医用设备管理制度
- 空调维护保养人员组织架构及人员岗位职责
- 大腿骨折的急救程序
- 工程伦理 课件 第九章 全球化视野下的工程伦理
- 学校宿舍家具采购投标方案技术标
- 中建抗浮锚杆专项施工方案范例
- 烟草业需要反垄断法吗烟草专卖改革的逻辑与路径
- 公路养护技师培训必须掌握计算题
- 2023新能源光伏电站索结构柔性光伏支架施工方法
- 钱钟书 谈艺录 word
- 03S702钢筋混凝土化粪池图集
- 2023届阜阳市颍州区数学四下期末达标检测模拟试题含解析
评论
0/150
提交评论