




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷沈阳市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141012 459和357的最大公约数( )A3B9C17D513 下列命题中的假命题是( )AxR,2x10BxR,lgx1CxN+,(x1)20DxR,tanx=24 在ABC中,b=,c=3,B=30,则a=( )AB2C或2D25 若直线y=kxk交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=( )A12B10C8D66 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是( )A10B11C12D13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力7 下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公室和开发部D总工程师、专家办公室和所有七个部8 下列各组表示同一函数的是( )Ay=与y=()2By=lgx2与y=2lgxCy=1+与y=1+Dy=x21(xR)与y=x21(xN)9 以过椭圆+=1(ab0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交B相切C相离D不能确定10已知等比数列an的公比为正数,且a4a8=2a52,a2=1,则a1=( )AB2CD11已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如表所示:降水量XX100100X200200X300X300工期延误天数Y051530概率P0.40.20.10.3在降水量X至少是100的条件下,工期延误不超过15天的概率为( )A0.1B0.3C0.42D0.512已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D98二、填空题13已知直线:()被圆:所截的弦长是圆心到直线的距离的2倍,则 .14已知,则的值为 15阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是16在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是17对于|q|1(q为公比)的无穷等比数列an(即项数是无穷项),我们定义Sn(其中Sn是数列an的前n项的和)为它的各项的和,记为S,即S=Sn=,则循环小数0. 的分数形式是18已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为三、解答题19(本小题满分12分)已知在中,角所对的边分别为且 .()求角的大小;() 若,的面积为,求. 20已知向量=(,1),=(cos,),记f(x)=(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)k在的零点个数21某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:50,6060,7070,8080,9090,100(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分22已知a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC(I)求C的值;()若c=2a,b=2,求ABC的面积23已知mR,函数f(x)=(x2+mx+m)ex(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)x2+x324证明:f(x)是周期为4的周期函数;(2)若f(x)=(0x1),求x5,4时,函数f(x)的解析式18已知函数f(x)=是奇函数沈阳市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题2 【答案】D【解析】解:459357=1102,357102=351,10251=2,459和357的最大公约数是51,故选:D【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法本题也可以验证得到结果3 【答案】C【解析】解:AxR,2x1=0正确;B当0x10时,lgx1正确;C当x=1,(x1)2=0,因此不正确;D存在xR,tanx=2成立,正确综上可知:只有C错误故选:C【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题4 【答案】C【解析】解:b=,c=3,B=30,由余弦定理b2=a2+c22accosB,可得:3=9+a23,整理可得:a23a+6=0,解得:a=或2故选:C5 【答案】C【解析】解:直线y=kxk恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1) B(x2,y2) 抛物y2=4x的线准线x=1,线段AB中点到y轴的距离为3,x1+x2=6,|AB|=|AF|+|BF|=x1+x2+2=8,故选:C【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离6 【答案】C【解析】由题意,得甲组中,解得乙组中,所以,所以,故选C7 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读8 【答案】C【解析】解:Ay=|x|,定义域为R,y=()2=x,定义域为x|x0,定义域不同,不能表示同一函数By=lgx2,的定义域为x|x0,y=2lgx的定义域为x|x0,所以两个函数的定义域不同,所以不能表示同一函数C两个函数的定义域都为x|x0,对应法则相同,能表示同一函数D两个函数的定义域不同,不能表示同一函数故选:C【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数9 【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MNl于N根据圆锥曲线的统一定义,可得=e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD|,以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)圆M到l的距离|MN|r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题10【答案】D【解析】解:设等比数列an的公比为q,则q0,a4a8=2a52,a62=2a52,q2=2,q=,a2=1,a1=故选:D11【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)=0.5,故答案选:D12【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性二、填空题13【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.14【答案】【解析】, , 故答案为.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.15【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视16【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题17【答案】 【解析】解:0. = + +=,故答案为:【点评】本题考查数列的极限,考查学生的计算能力,比较基础18【答案】 【解析】解:已知数列1,a1,a2,9是等差数列,a1+a2 =1+9=10数列1,b1,b2,b3,9是等比数列, =19,再由题意可得b2=1q20 (q为等比数列的公比),b2=3,则=,故答案为【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题三、解答题19【答案】解:()由正弦定理及已知条件有, 即. 3分 由余弦定理得:,又,故. 6分 () 的面积为, 8分 又由()及得, 10分 由 解得或. 12分20【答案】 【解析】解:(1)向量=(,1),=(cos,),记f(x)=f(x)=cos+=sin+cos+=sin(+)+,最小正周期T=4,2k+2k+,则4kx4k+,kZ故函数f(x)的单调递增区间是4k,4k+,kZ;(2)将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为:y=g(x)=sin(x+)+ =sin()+,则y=g(x)k=sin(x)+k,x0,可得:x,sin(x)1,0sin(x)+,若函数y=g(x)k在0,上有零点,则函数y=g(x)的图象与直线y=k在0,上有交点,实数k的取值范围是0,当k0或k时,函数y=g(x)k在的零点个数是0;当0k1时,函数y=g(x)k在的零点个数是2;当k=0或k=时,函数y=g(x)k在的零点个数是1【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力21【答案】 【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005图中a的值0.005(2)这100名学生语文成绩的平均分为:550.05+650.4+750.3+850.2+950.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解22【答案】 【解析】解:(I)a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC,sinCsinA=sinAcosC,sinCsinAsinAcosC=0,sinC=cosC,tanC=,由三角形内角的范围可得C=;()c=2a,b=2,C=,由余弦定理可得c2=a2+b22abcosC,4a2=a2+124a,解得a=1+,或a=1(舍去)ABC的面积S=absinC=23【答案】 【解析】解:(1)令f(x)=0,得(x2+mx+m)ex=0,所以x2+mx+m=0因为函数f(x)没有零点,所以=m24m0,所以0m4(2)f(x)=(2x+m)ex+(x2+mx+m)ex=(x+2)(x+m)ex,令f(x)=0,得x=2,或x=m,当m2时,m2列出下表:x(,m)m(m,2)2(2,+)f(x)+00+f(x)mem(4m)e2当x=m时,f(x)取得极大值mem当m=2时,f(x)=(x+2)2ex0,f(x)在R上为增函数,所以f(x)无极大值当m2时,m2列出下表:x(,2)2(2,m)m(m,+)f(x)+00+f(x)(4m)e2mem当x=2时,f(x)取得极大值(4m)e2,所以(3)当m=0时,f(x)=x2ex,令(x)=ex1x,则(x)=ex1,当x0时,(x)0,(x)为增函数;当x0时,(x)0,(x)为减函数,所以当x=0时,(x)取得最小值0所以(x)(0)=0,ex1x0,所以ex1+x,因此x2exx2+x3,即f(x)x2+x3【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键24【答案】 【解析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农田果园出租协议书范本
- 租车带司机接送合同范本
- 短视频公司员工合同范本
- 收纳盒购买协议合同样本
- 短租公寓如何写合同协议
- 合作居间协议与劳动合同
- 业主安装桥架合同范本
- (2025年标准)婆婆抢媳妇协议书
- (2025年标准)平板瓦协议书
- (2025年标准)聘请排球教练协议书
- 小学生育儿心得课件
- 《油井工程课件:钻井技术培训》
- 2024年秋新仁爱科普版七年级上册英语第1~6单元高频率常用常考动词100个
- 《手术室感染与预防》课件
- 医院美容科管理规章制度(3篇)
- 第四届全国冶金矿山行业职业技能竞赛(磨矿分级工)理论参考试题库(含答案)
- 皮肤镜课件教学课件
- 2024至2030年中国军工压缩机行业投资前景及策略咨询研究报告
- 民乐社团活动计划
- 反诈知识竞赛题库及答案(共286题)
- 2024年新农村雨污分流建设合同
评论
0/150
提交评论