井冈山市二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
井冈山市二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
井冈山市二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
井冈山市二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
井冈山市二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷井冈山市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知全集,集合,集合,则集合为( ) A. B. C. D.【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.2 已知圆C:x2+y22x=1,直线l:y=k(x1)+1,则l与C的位置关系是()A一定相离B一定相切C相交且一定不过圆心D相交且可能过圆心3 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=04 函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是( )Af(2)f()f(5)Bf()f(2)f(5)Cf(2)f(5)f()Df(5)f()f(2)5 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD6 双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD7 求值: =( )Atan 38BCD8 已知x,y满足时,z=xy的最大值为( )A4B4C0D29 双曲线4x2+ty24t=0的虚轴长等于( )AB2tCD410已知f(x)是R上的偶函数,且在(,0)上是增函数,设,b=f(log43),c=f(0.41.2)则a,b,c的大小关系为( )AacbBbacCcabDcba11如图,为正方体,下面结论: 平面; ; 平面.其中正确结论的个数是( )A B C D 12已知全集U=0,1,2,3,4,集合A=0,1,3,B=0,1,4,则(UA)B为( )A0,1,2,4B0,1,3,4C2,4D4二、填空题13等比数列an的公比q=,a6=1,则S6=14某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元15抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为16定积分sintcostdt=17直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.18在极坐标系中,直线l的方程为cos=5,则点(4,)到直线l的距离为三、解答题19已知直线l:xy+9=0,椭圆E: +=1,(1)过点M(,)且被M点平分的弦所在直线的方程;(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,F1PF2最大,并说明理由;(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程20(本小题12分)设是等差数列,是各项都为正数的等比数列,且,.111(1)求,的通项公式;(2)求数列的前项和.21(本题满分15分) 已知函数,当时,恒成立(1)若,求实数的取值范围;(2)若,当时,求的最大值【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力22已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体()求几何体的表面积()判断在圆A上是否存在点M,使二面角MBCD的大小为45,且CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由23中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率24(本小题满分12分)在ABC中,A,B,C所对的边分别是a、b、c,不等式x2cos C4xsin C60对一切实数x恒成立.(1)求cos C的取值范围;(2)当C取最大值,且ABC的周长为6时,求ABC面积的最大值,并指出面积取最大值时ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.井冈山市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C.【解析】由题意得,故选C.2 【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果【解答】解:圆C方程化为标准方程得:(x1)2+y2=2,圆心C(1,0),半径r=,1,圆心到直线l的距离d=r,且圆心(1,0)不在直线l上,直线l与圆相交且一定不过圆心故选C3 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=04 【答案】B【解析】解:函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,f()=f(6),f(5)=f(1),f(6)f(2)f(1),f()f(2)f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档5 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C6 【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A7 【答案】C【解析】解: =tan(49+11)=tan60=,故选:C【点评】本题主要考查两角和的正切公式的应用,属于基础题8 【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=xy为y=xz,由图可知,当直线y=xz过点A时,直线在y轴上的截距最小,z有最大值为4故选:A【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题9 【答案】C【解析】解:双曲线4x2+ty24t=0可化为:双曲线4x2+ty24t=0的虚轴长等于故选C10【答案】C【解析】解:由题意f(x)=f(|x|)log431,|log43|1;2|ln|=|ln3|1;|0.41.2|=|1.2|2|0.41.2|ln|log43|又f(x)在(,0上是增函数且为偶函数,f(x)在0,+)上是减函数cab故选C11【答案】【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.12【答案】A【解析】解:U=0,1,2,3,4,集合A=0,1,3,CUA=2,4,B=0,1,4,(CUA)B=0,1,2,4故选:A【点评】本题考查集合的交、交、补集的混合运算,是基础题解题时要认真审题,仔细解答二、填空题13【答案】21 【解析】解:等比数列an的公比q=,a6=1,a1()5=1,解得a1=32,S6=21故答案为:2114【答案】18.2 【解析】解:某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,x=20,y=0.920+0.2=18.2(亿元)故答案为:18.2【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题15【答案】4 【解析】解:由已知可得直线AF的方程为y=(x1),联立直线与抛物线方程消元得:3x210x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4故答案为:4【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题16【答案】 【解析】解: 0sintcostdt=0sin2td(2t)=(cos2t)|=(1+1)=故答案为:17【答案】【解析】18【答案】3 【解析】解:直线l的方程为cos=5,化为x=5点(4,)化为点到直线l的距离d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题三、解答题19【答案】 【解析】解:(1)设以点M(,)为中点的弦的端点为A(x1,y1),B(x2,y2),x1+x2=1,y1+y2=1,把A(x1,y1),B(x2,y2)代入椭圆E: +=1,得,kAB=,直线AB的方程为y=(x),即2x+8y5=0(2)设|PF1|=r1,|PF2|=r1,则cosF1PF2=1=1=1,又r1r2()2=a2(当且仅当r1=r2时取等号)当r1=r2=a,即P(0,)时,cosF1PF2最小,又F1PF2(0,),当P为短轴端点时,F1PF2最大(3)=12, =3, =9则由题意,设所求的椭圆方程为+=1(a29),将y=x+9代入上述椭圆方程,消去y,得(2a29)x2+18a2x+90a2a4=0,依题意=(18a2)24(2a29)(90a2a4)0,化简得(a245)(a29)0,a290,a245,故所求的椭圆方程为=1【点评】本题考查直线方程、椭圆方程的求法,考查当P在何位置时,F1PF2最大的判断与求法,是中档题,解题时要认真审题,注意根的判别式、余弦定理、椭圆性质的合理运用 20【答案】(1);(2).【解析】(2),6分,.8分-得,10分所以.12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设的公差为,的公比为,根据等差数列和等比数列的通项公式,联立方程求得和,进而可得,的通项公式;(2)数列的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和.21【答案】【解析】(1);(2).(1)由且,得,当时,得,3分故的对称轴,当时, 5分 解得,综上,实数的取值范围为;7分,13分且当,时,若,则恒成立,且当时,取到最大值的最大值为2.15分22【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)作MEAC,EFBC,连结FM,易证FMBC,MFE为二面角MBCD的平面角,设CAM=,EM=2sin,EF=,tanMFE=1,tan=,CM=2【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目23【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论