2018届高三数学(理)高考总复习:板块命题点专练(十二)Word版含解析.doc_第1页
2018届高三数学(理)高考总复习:板块命题点专练(十二)Word版含解析.doc_第2页
2018届高三数学(理)高考总复习:板块命题点专练(十二)Word版含解析.doc_第3页
2018届高三数学(理)高考总复习:板块命题点专练(十二)Word版含解析.doc_第4页
2018届高三数学(理)高考总复习:板块命题点专练(十二)Word版含解析.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

板块命题点专练(十二)命题点向量法求空间角及应用命题指数:难度:中题型:解答题1(2015全国卷)如图,长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,D1C1上,A1ED1F4过点E,F的平面与此长方体的面相交,交线围成一个正方形(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面所成角的正弦值解:(1)交线围成的正方形EHGF如图所示(2)作EMAB,垂足为M,则AMA1E4,EMAA18因为四边形EHGF为正方形,所以EHEFBC10于是MH6,所以AH10以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),(10,0,0),(0,6,8)设n(x,y,z)是平面EHGF的法向量,则即所以可取n(0,4,3)又(10,4,8),故|cosn,|所以AF与平面EHGF所成角的正弦值为2(2014全国卷)如图,四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点(1)证明:PB平面AEC;(2)设二面角D AEC为60,AP1,AD,求三棱锥EACD的体积解:(1)证明:连接BD交AC于点O,连接EO因为平面ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EOPB因为EO平面AEC,PB平面AEC,所以PB平面AEC(2)因为PA平面ABCD,平面ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,的方向为x轴的正方向,|为单位长,建立空间直角坐标系Axyz,则D(0,0),E,设B(m,0,0)(m0),则C(m,0),(m,0)设n1(x,y,z)为平面ACE的法向量,则即可取n1又n2(1,0,0)为平面DAE的法向量,由题设|cosn1,n2|,即 ,解得m因为E为PD的中点,所以三棱锥EACD的高为三棱锥EACD的体积V3(2016山东高考)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线(1)已知G,H分别为EC,FB的中点,求证:GH平面ABC;(2)已知EFFBAC2,ABBC,求二面角FBCA的余弦值解:(1)证明:设CF的中点为I,连接GI,HI在CEF中,因为点G,I分别是CE,CF的中点,所以GIEF又EFOB,所以GIOB在CFB中,因为H,I分别是FB,CF的中点,所以HIBC又HIGII,BCOBB,所以平面GHI平面ABC因为GH平面GHI,所以GH平面ABC(2)法一:连接OO,则OO平面ABC又ABBC,且AC是圆O的直径,所以BOAC以O为坐标原点,建立如图所示的空间直角坐标系Oxyz由题意得B(0,2,0),C(2,0,0)过点F作FMOB于点M,所以FM 3,可得F(0,3)故(2,2,0),(0,3)设m(x,y,z)是平面BCF的法向量由可得可得平面BCF的一个法向量m因为平面ABC的一个法向量n(0,0,1),所以cosm,n,所以二面角FBCA的余弦值为法二:如图,连接OO,过点F作FMOB于点M,则有FMOO又OO平面ABC,所以FM平面ABC,可得FM3过点M作MNBC于点N,连接FN,可得FNBC,从而FNM为二面角FBCA的平面角又ABBC,AC是圆O的直径,所以MNBMsin 45从而FN,可得cosFNM所以二面角FBCA的余弦值为4(2016天津高考)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,ABBE2(1)求证:EG平面ADF;(2)求二面角OEFC的正弦值;(3)设H为线段AF上的点,且AHHF,求直线BH和平面CEF所成角的正弦值解:依题意,OF平面ABCD,如图,以O为原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(1,1,0),B(1,1,0),C(1,1,0),D(1,1,0),E(1,1,2),F(0,0,2),G(1,0,0)(1)证明:依题意,(2,0,0),(1,1,2)设n1(x1,y1,z1)为平面ADF的法向量,则即不妨取z11,可得n1(0,2,1)又(0,1,2),可得n10又因为直线EG平面ADF,所以EG平面ADF(2)易证(1,1,0)为平面OEF的一个法向量,依题意,(1,1,0),(1,1,2)设n2(x2,y2,z2)为平面CEF的法向量,则即不妨取x21,可得n2(1,1,1)因此有cos,n2,于是sin,n2所以,二面角OEFC的正弦值为(3)由AHHF,得AHAF因为(1,1,2),所以AH,进而有H,从而因此cos,n2所以直线BH和平面CEF所成角的正弦值为5(2016全国甲卷)如图,菱形ABCD的对角线AC与BD交于点O,AB5,AC6,点E,F分别在AD,CD上,AECF,EF交BD于点H将DEF沿EF折到DEF的位置,OD(1)证明:DH平面ABCD;(2)求二面角BDAC的正弦值解:(1)证明:由已知得ACBD,ADCD又由AECF,得,故ACEF因此EFHD,从而EFDH由AB5,AC6,得DOBO4由EFAC,得所以OH1,DHDH3于是DH2OH2321210DO2,故DHOH又DHEF,而OHEFH,所以DH平面ABCD(2)如图,以H为坐标原点,HF的方向为x轴正方向,建立空间直角坐标系Hxyz,则H(0,0,0),A(3,1,0),B(0,5,0),C(3,1,0),D(0,0,3),故(3,4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论