




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
禅城区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是( )ABCD2 已知 m、n 是两条不重合的直线,、是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n,则 mnB若,则 C若m,n,则 mnD若 m,m,则 3 若函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,则有( )Aa1且b1Ba1且b0C0a1且b0D0a1且b04 在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A33% B49% C62% D88%5 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?6 过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则AOF的面积为( )ABCD27 在中,内角,所对的边分别是,已知,则( )A B C. D8 在中,则的取值范围是( )1111A B C. D9 若函数则“a=1”是“函数y=f(x)在R上单调递减”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10已知函数,函数,其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD11 在区间上恒正,则的取值范围为( )A B C D以上都不对12已知双曲线kx2y2=1(k0)的一条渐近线与直线2x+y3=0垂直,则双曲线的离心率是( )ABC4D二、填空题13小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米(太阳光线可看作为平行光线) 14若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力15设全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,若NM,则实数a的取值范围是16已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力17已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是18设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是三、解答题19求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线求双曲线C的方程(2)焦点在直线3x4y12=0 的抛物线的标准方程20已知函数,(1)判断的单调性并且证明;(2)求在区间上的最大值和最小值21已知函数f(x)=x2mx在1,+)上是单调函数(1)求实数m的取值范围;(2)设向量,求满足不等式的的取值范围22设M是焦距为2的椭圆E: +=1(ab0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=(1)求椭圆E的方程;(2)已知椭圆E: +=1(ab0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标23武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率24已知函数f(x)=()求函数f(x)单调递增区间;()在ABC中,角A,B,C的对边分别是a,b,c,且满足(2ac)cosB=bcosC,求f(A)的取值范围禅城区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin2(x)=sin(2x);考察选项不难发现:当x=时,sin(2)=0;(,0)就是函数的一个对称中心坐标故选:D【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型2 【答案】C【解析】解:对于A,若 m,n,则 m与n相交、平行或者异面;故A错误;对于B,若,则 与可能相交,如墙角;故B错误;对于C,若m,n,根据线面垂直的性质定理得到 mn;故C正确;对于D,若 m,m,则 与可能相交;故D错误;故选C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键3 【答案】B【解析】解:函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,根据图象的性质可得:a1,a0b10,即a1,b0,故选:B4 【答案】B【解析】5 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误6 【答案】B【解析】解:抛物线y2=4x的准线l:x=1|AF|=3,点A到准线l:x=1的距离为31+xA=3xA=2,yA=2,AOF的面积为=故选:B【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键7 【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.8 【答案】C【解析】考点:三角形中正余弦定理的运用.9 【答案】A【解析】解:设g(x)=,h(x)=x+a,则g(x),h(x)都是单调递减y=在(,0上单调递减且h(x)h(0)=1若a=1时,y=x+a单调递减,且h(x)h(0)=1,即函数y=f(x)在R上单调递减若函数y=f(x)在R上单调递减,则g(0)h(0)a1则“a=1”是“函数y=f(x)在R上单调递减”的充分不必要条件故选A【点评】本题以充分必要条件的判断为载体,主要考查了分段函数的单调性的判断,解题 中要注意分段函数的端点处的函数值的处理10【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键11【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则,即,解得,故选C.考点:函数的单调性的应用.12【答案】A【解析】解:由题意双曲线kx2y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=x故=,k=,可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证二、填空题13【答案】3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子设BC=x,则根据题意=,AB=x,在AE=ABBE=x1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3【点评】本题主要考查了解三角形的实际应用解题的关键是建立数学模型,把实际问题转化为数学问题14【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得15【答案】,1 【解析】解:全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,NM,2a11 且4a2,解得 2a,故实数a的取值范围是,1,故答案为,116【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得17【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题18【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a2三、解答题19【答案】 【解析】解:(1)由椭圆+=1,得a2=8,b2=4,c2=a2b2=4,则焦点坐标为F(2,0),直线y=x为双曲线的一条渐近线,设双曲线方程为(0),即,则+3=4,=1双曲线方程为:;(2)由3x4y12=0,得,直线在两坐标轴上的截距分别为(4,0),(0,3),分别以(4,0),(0,3)为焦点的抛物线方程为:y2=16x或x2=12y【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题20【答案】(1)增函数,证明见解析;(2)最小值为,最大值为.【解析】试题分析:(1)在上任取两个数,则有,所以在上是增函数;(2)由(1)知,最小值为,最大值为.试题解析:在上任取两个数,则有,所以在上是增函数所以当时,当时,.考点:函数的单调性证明【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数,然后作差,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.121【答案】 【解析】解:(1)函数f(x)=x2mx在1,+)上是单调函数x=1m2实数m的取值范围为(,2;(2)由(1)知,函数f(x)=x2mx在1,+)上是单调增函数,2cos2cos2+3cos2的取值范围为【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式22【答案】 【解析】(1)解:设A(a,0),B(a,0),M(m,n),则+=1,即n2=b2,由k1k2=,即=,即有=,即为a2=2b2,又c2=a2b2=1,解得a2=2,b2=1即有椭圆E的方程为+y2=1;(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),则两切线方程PC,PD分别为: +y1y=1, +y2y=1,由于P点在切线PC,PD上,故P(2,t)满足+y1y=1, +y2y=1,得:x1+y1t=1,x2+y2t=1,故C(x1,y1),D(x2,y2)均满足方程x+ty=1,即x+ty=1为CD的直线方程令y=0,则x=1,故CD过定点(1,0)【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力解题时要注意运算能力的培养23【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学生国学知识竞赛试题库附答案
- 游泳试卷考试题及答案
- 景物组合考试题及答案
- 梳子趣味测试题及答案
- 医学康复笔试题及答案
- 磁电选矿试题及答案
- 临床药学室考试题及答案2025版
- 工地安全知识培训课件讲稿
- 工商消防知识培训课件讲座
- 2025年新高考语文二轮专题复习训练任务群 考点练案3 归纳概括原因:信息类阅读+文言文阅读+名篇名句默写
- 2025年急诊急救试题(附答案)
- 贵州航空产业城集团股份有限公司旗下子公司贵州安立航空材料有限公司招聘笔试题库2025
- 2025年医师节临床知识竞赛题库
- 2025年校长职级考试题及答案
- 2024兴平市辅警招聘考试真题
- 2025年保育员初级考试试题试题(含答案)(完整版)
- 2024年江苏镇江市科学技术局遴选事业单位人员2人笔试高频难、易错点备考题库及参考答案详解1套
- 成都市二手房买卖合同房屋交易税费缴纳及减免协议
- 经食道心脏超声技术规范
- 四川省达州市达川区2024-2025学年八年级下学期6月期末考试英语试题(含笔试答案无听力答案、原文及音频)
- (高清版)TDT 1075-2023 光伏发电站工程项目用地控制指标
评论
0/150
提交评论