




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷岱山县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 i是虚数单位,i2015等于( )A1B1CiDi2 如果过点M(2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是( )ABCD3 对于区间a,b上有意义的两个函数f(x)与g(x),如果对于区间a,b中的任意数x均有|f(x)g(x)|1,则称函数f(x)与g(x)在区间a,b上是密切函数,a,b称为密切区间若m(x)=x23x+4与n(x)=2x3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A3,4B2,4C1,4D2,34 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )AB4CD25 若将函数y=tan(x+)(0)的图象向右平移个单位长度后,与函数y=tan(x+)的图象重合,则的最小值为( )ABCD6 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.17 的大小关系为( )ABC.D8 过点,的直线的斜率为,则( )A B C D9 已知f(x)=x33x+m,在区间0,2上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是( )Am2Bm4Cm6Dm810如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,),AOC=,若|BC|=1,则cos2sincos的值为( )ABCD11设复数z满足z(1+i)=2(i为虚数单位),则z=( )A1iB1+iC1iD1+i12函数f(x)是以2为周期的偶函数,且当x(0,1)时,f(x)=x+1,则函数f(x)在(1,2)上的解析式为( )Af(x)=3xBf(x)=x3Cf(x)=1xDf(x)=x+1二、填空题13下列说法中,正确的是(填序号)若集合A=x|kx2+4x+4=0中只有一个元素,则k=1;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称;y=()x是增函数;定义在R上的奇函数f(x)有f(x)f(x)014已知f(x)x(exaex)为偶函数,则a_15在ABC中,已知=2,b=2a,那么cosB的值是16已知函数是定义在R上的奇函数,且当时,,则在R上的解析式为 17当时,4xlogax,则a的取值范围18若复数是纯虚数,则的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力三、解答题19已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数+2ax若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围20已知二次函数f(x)=x2+2bx+c(b,cR)(1)若函数y=f(x)的零点为1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,求实数b的取值范围21已知曲线C的极坐标方程为42cos2+92sin2=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;()求曲线C的直角坐标方程;()若P(x,y)是曲线C上的一个动点,求3x+4y的最大值22设定义在(0,+)上的函数f(x)=,g(x)=,其中nN*()求函数f(x)的最大值及函数g(x)的单调区间;()若存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值(参考数据:ln41.386,ln51.609)23已知数列an的前n项和为Sn,且Sn=an,数列bn中,b1=1,点P(bn,bn+1)在直线xy+2=0上(1)求数列an,bn的通项an和bn;(2)设cn=anbn,求数列cn的前n项和Tn24(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数列,且,.(1)求数列的通项; (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.岱山县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:i2015=i5034+3=i3=i,故选:D【点评】本题主要考查复数的基本运算,比较基础2 【答案】D【解析】解:设过点M(2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k22=0,过点M(2,0)的直线l与椭圆有公共点,=64k44(2k2+1)(8k22)0,整理,得k2,解得k直线l的斜率k的取值范围是,故选:D【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用3 【答案】D【解析】解:m(x)=x23x+4与n(x)=2x3,m(x)n(x)=(x23x+4)(2x3)=x25x+7令1x25x+71,则有,2x3故答案为D【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题4 【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h=3故V=2故选C5 【答案】D【解析】解:y=tan(x+),向右平移个单位可得:y=tan(x)+=tan(x+)+k=k+(kZ),又0min=故选D6 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.7 【答案】B【解析】试题分析:由于,因为,所以,又,考点:实数的大小比较.8 【答案】【解析】考点:1.斜率;2.两点间距离.9 【答案】C【解析】解:由f(x)=3x23=3(x+1)(x1)=0得到x1=1,x2=1(舍去)函数的定义域为0,2函数在(0,1)上f(x)0,(1,2)上f(x)0,函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m20 ;f(1)+f(1)f(2),即4+2m2+m由得到m6为所求故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间0,2上的最小值与最大值10【答案】 A【解析】解:|BC|=1,点B的坐标为(,),故|OB|=1,BOC为等边三角形,BOC=,又AOC=,AOB=,cos()=,sin()=,sin()=cos=cos()=coscos()+sinsin() =+=,sin=sin()=sincos()cossin()=cos2sincos=(2cos21)sin=cossin=,故选:A【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题11【答案】A【解析】解:z(1+i)=2,z=1i故选:A【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题12【答案】A【解析】解:x(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,x(1,2),(x2)(1,0),f(x)=f(x2)=f(2x)=2x+1=3x,故选A二、填空题13【答案】 【解析】解:若集合A=x|kx2+4x+4=0中只有一个元素,则k=1或k=0,故错误;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称,故正确;y=()x是减函数,故错误;定义在R上的奇函数f(x)有f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档14【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:115【答案】 【解析】解: =2,由正弦定理可得:,即c=2ab=2a,=cosB=故答案为:【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题16【答案】【解析】试题分析:令,则,所以,又因为奇函数满足,所以,所以在R上的解析式为。考点:函数的奇偶性。17【答案】 【解析】解:当时,函数y=4x的图象如下图所示若不等式4xlogax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)y=logax的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=logax的图象对应的底数a应满足a1故答案为:(,1)18【答案】【解析】由题意知,且,所以,则.三、解答题19【答案】 【解析】解:(1)当时,;对于x1,e,有f(x)0,f(x)在区间1,e上为增函数,(2)在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)f(x)f2(x)令0,对x(1,+)恒成立,且h(x)=f1(x)f(x)=0对x(1,+)恒成立,1)若,令p(x)=0,得极值点x1=1,当x2x1=1,即时,在(x2,+)上有p(x)0,此时p(x)在区间(x2,+)上是增函数,并且在该区间上有p(x)(p(x2),+),不合题意;当x2x1=1,即a1时,同理可知,p(x)在区间(1,+)上,有p(x)(p(1),+),也不合题意;2)若,则有2a10,此时在区间(1,+)上恒有p(x)0,从而p(x)在区间(1,+)上是减函数;要使p(x)0在此区间上恒成立,只须满足,所以a又因为h(x)=x+2a=0,h(x)在(1,+)上为减函数,h(x)h(1)=+2a0,所以a综合可知a的范围是,【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一20【答案】 【解析】解:(1)1,1是函数y=f(x)的零点,解得b=0,c=1(2)f(1)=1+2b+c=0,所以c=12b令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)xb1,关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,即解得b,即实数b的取值范围为(,)【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题21【答案】 【解析】解:()由42cos2+92sin2=36得4x2+9y2=36,化为;()设P(3cos,2sin),则3x+4y=,R,当sin(+)=1时,3x+4y的最大值为【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题22【答案】 【解析】解:()函数f(x)在区间(0,+)上不是单调函数证明如下,令 f(x)=0,解得当x变化时,f(x)与f(x)的变化如下表所示:xf(x)+0f(x)所以函数f(x)在区间上为单调递增,区间上为单调递减所以函数f(x)在区间(0,+)上的最大值为f()=g(x)=,令g(x)=0,解得x=n当x变化时,g(x)与g(x)的变化如下表所示:x(0,n)n(n,+)g(x)0+g(x)所以g(x)在(0,n)上单调递减,在(n,+)上单调递增()由()知g(x)的最小值为g(n)=,存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,即en+1nn1,即n+1(n1)lnn,当n=1时,成立,当n2时,lnn,即0,设h(n)=,n2,则h(n)是减函数,继续验证,当n=2时,3ln20,当n=3时,2ln30,当n=4时, ,当n=5时,ln51.60,则n的最大值是4【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题23【答案】 【解析】解:(1)Sn=an,当n2时,an=SnSn1=an,即an=3an1,a1=S1=,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 梦幻花园的实现方法
- 2025浙江省金华成泰农商银行社会招聘考试含答案
- 2025浙江金华市武义县司法局招聘4人笔试备考试题及答案解析
- 2025云南楚雄州禄丰市教育体育局机关直属事业单位选调工作人员10人笔试含答案
- 初高中学生如何正确处理学校暴力问题
- 船舶货物运输事故调查规定
- 如何引导初高中学生正确应对生活挑战
- 2025四川内江市法院系统招聘聘用制审判辅助人员120人考试含答案
- 2025年事业单位工勤技能-广东-广东计算机操作员一级(高级技师)历年参考题库含答案解析
- 2025年四川宜宾兴文县第一次考调事业单位工作人员17人笔试备考题库及参考答案详解
- 高效能新能源汽车电池的研发与应用前景
- 2025年《网络营销》课程标准
- DB32-T 5092-2025 低压分布式光伏接入电网数据采集要求
- 儿童VTE防治课件
- 生鲜店食品安全管理制度
- 2025年中国微网雾化器行业市场前景预测及投资价值评估分析报告
- 即墨区离婚协议书
- 别墅设计全套方案
- 精神患者监管协议书
- 军队文职理工类-数学2+物理-黄金考点汇编
- 中国养老产业发展研究报告
评论
0/150
提交评论