




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形一.选择题1. (2016陕西3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M、N,则图中的全等三角形共有()A2对 B3对 C4对 D5对【考点】正方形的性质;全等三角形的判定【分析】可以判断ABDBCD,MDOMBO,NODNOB,MONMON由此即可对称结论【解答】解:四边形ABCD是正方形,AB=CD=CB=AD,A=C=ABC=ADC=90,ADBC,在ABD和BCD中,ABDBCD,ADBC,MDO=MBO,在MOD和MOB中,MDOMBO,同理可证NODNOB,MONMON,全等三角形一共有4对故选C2. (2016辽宁丹东3分)如图,在ABC中,AD和BE是高,ABE=45,点F是AB的中点,AD与FE、BE分别交于点G、H,CBE=BAD有下列结论:FD=FE;AH=2CD;BCAD=AE2;SABC=4SADF其中正确的有()A1个B2 个C3 个D4个【考点】相似三角形的判定与性质;全等三角形的判定与性质【分析】由直角三角形斜边上的中线性质得出FD=AB,证明ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,正确;证出ABC=C,得出AB=AC,由等腰三角形的性质得出BC=2CD,BAD=CAD=CBE,由ASA证明AEHBEC,得出AH=BC=2CD,正确;证明ABDBCE,得出=,即BCAD=ABBE,再由等腰直角三角形的性质和三角形的面积得出BCAD=AE2;正确;由F是AB的中点,BD=CD,得出SABC=2SABD=4SADF正确;即可得出结论【解答】解:在ABC中,AD和BE是高,ADB=AEB=CEB=90,点F是AB的中点,FD=AB,ABE=45,ABE是等腰直角三角形,AE=BE,点F是AB的中点,FE=AB,FD=FE,正确;CBE=BAD,CBE+C=90,BAD+ABC=90,ABC=C,AB=AC,ADBC,BC=2CD,BAD=CAD=CBE,在AEH和BEC中,AEHBEC(ASA),AH=BC=2CD,正确;BAD=CBE,ADB=CEB,ABDBCE,=,即BCAD=ABBE,AE2=ABAE=ABBE,BCAD=ACBE=ABBE,BCAD=AE2;正确;F是AB的中点,BD=CD,SABC=2SABD=4SADF正确;故选:D3. (2016黑龙江龙东3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()AE=BF;AEBF;sinBQP=;S四边形ECFG=2SBGEA4 B3 C2 D1【考点】四边形综合题【分析】首先证明ABEBCF,再利用角的关系求得BGE=90,即可得到AE=BF;AEBF;BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解【解答】解:E,F分别是正方形ABCD边BC,CD的中点,CF=BE,在ABE和BCF中,RtABERtBCF(SAS),BAE=CBF,AE=BF,故正确;又BAE+BEA=90,CBF+BEA=90,BGE=90,AEBF,故正确;根据题意得,FP=FC,PFB=BFC,FPB=90CDAB,CFB=ABF,ABF=PFB,QF=QB,令PF=k(k0),则PB=2k在RtBPQ中,设QB=x,x2=(xk)2+4k2,x=,sin=BQP=,故正确;BGE=BCF,GBE=CBF,BGEBCF,BE=BC,BF=BC,BE:BF=1:,BGE的面积:BCF的面积=1:5,S四边形ECFG=4SBGE,故错误故选:B4(2016湖北荆门3分)如图,在矩形ABCD中(ADAB),点E是BC上一点,且DE=DA,AFDE,垂足为点F,在下列结论中,不一定正确的是()AAFDDCE BAF=AD CAB=AF DBE=ADDF【考点】矩形的性质;全等三角形的判定【分析】先根据已知条件判定判定AFDDCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可【解答】解:(A)由矩形ABCD,AFDE可得C=AFD=90,ADBC,ADF=DEC又DE=AD,AFDDCE(AAS),故(A)正确;(B)ADF不一定等于30,直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由AFDDCE,可得AF=CD,由矩形ABCD,可得AB=CD,AB=AF,故(C)正确;(D)由AFDDCE,可得CE=DF,由矩形ABCD,可得BC=AD,又BE=BCEC,BE=ADDF,故(D)正确;故选(B)5(2016山东省德州市3分)在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设AEM=(090),给出下列四个结论:AM=CN;AME=BNE;BNAM=2;SEMN=上述结论中正确的个数是()A1B2C3D4【考点】全等三角形的判定与性质;旋转的性质【分析】作辅助线EFBC于点F,然后证明RtAMERtFNE,从而求出AM=FN,所以BM与CN的长度相等由RtAMERtFNE,即可得到结论正确;经过简单的计算得到BNAM=BCCNAM=BCBMAM=BC(BM+AM)=BCAB=42=2,用面积的和和差进行计算,用数值代换即可【解答】解:如图,在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC,AEM+DEN=90,FEN+DEN=90,AEM=FEN,在RtAME和RtFNE中,RtAMERtFNE,AM=FN,MB=CNAM不一定等于CN,AM不一定等于CN,错误,由有RtAMERtFNE,AME=BNE,正确,由得,BM=CN,AD=2AB=4,BC=4,AB=2BNAM=BCCNAM=BCBMAM=BC(BM+AM)=BCAB=42=2,正确,如图,由得,CN=CFFN=2AM,AE=AD=2,AM=FNtan=,AM=AEtancos=,cos2=,=1+=1+()2=1+tan2,=2(1+tan2)SEMN=S四边形ABNESAMESMBN=(AE+BN)ABAEAMBNBM=(AE+BCCN)2AEAM(BCCN)CN=(AE+BCCF+FN)2AEAM(BC2+AM)(2AM)=AE+BCCF+AMAEAM(2+AM)(2AM)=AE+AMAEAM+AM2=AE+AEtanAE2tan+AE2tan2=2+2tan2tan+2tan2=2(1+tan2)=正确故选C【点评】此题是全等三角形的性质和判定题,主要考查了全等三角形的性质和判定,图形面积的计算锐角三角函数,解本题的关键是RtAMERtFNE,难点是计算SEMN二.填空题1. (2016辽宁丹东3分)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB点P在平面内,若以点P、A、B为顶点的三角形与AOB全等(点P与点O不重合),则点P的坐标为(3,4)或(frac9625,frac7225)或(frac2125,frac2825)【考点】全等三角形的判定;坐标与图形性质【分析】由条件可知AB为两三角形的公共边,且AOB为直角三角形,当AOB和APB全等时,则可知APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标【解答】解:如图所示:OA=3,OB=4,P1(3,4);连结OP2,设AB的解析式为y=kx+b,则,解得故AB的解析式为y=x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);连结P2P3,(3+0)2=1.5,(0+4)2=2,E(1.5,2),1.52=,22=,P3(,)故点P的坐标为(3,4)或(,)或(,)故答案为:(3,4)或(,)或(,)2(2016山东省济宁市3分)如图,ABC中,ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使AEHCEB【考点】全等三角形的判定【分析】开放型题型,根据垂直关系,可以判断AEH与CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了【解答】解:ADBC,CEAB,垂足分别为D、E,BEC=AEC=90,在RtAEH中,EAH=90AHE,又EAH=BAD,BAD=90AHE,在RtAEH和RtCDH中,CHD=AHE,EAH=DCH,EAH=90CHD=BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE可证AEHCEB故填空答案:AH=CB或EH=EB或AE=CE三.解答题1(2016山东省东营市10分)如图1,ABC是等腰直角三角形,BAC 90,ABAC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BDCF,BDCF成立 (1)当ABC绕点A逆时针旋转(090)时,如图2,BDCF成立吗?若成立,请证明;若不成立,请说明理由 (2)当ABC绕点A逆时针旋转45时,如图3,延长DB交CF于点H. 求证:BDCF; 当AB2,AD3时,求线段DH的长【知识点】等腰三角形等腰三角形的现性质、特殊的平行四边形正方形的性质、旋转旋转的特性、全等三角形全等三角形的判判定和性质、相似三角形相似三角形的判判定和性质【思路分析】(1)先用“SAS”证明CAFBAD,再用全等三角形的性质即可得BDCF成立;(2)利用HFN与AND的内角和以及它们的等角,得到NHF90,即可得的结论;(3)连接DF,延长AB,与DF交于点M,利用BMDFHD求解.【解答】(l)解:BDCF成立证明:ACAB,CAFBAD;AFAD,ABDACF,BDCF.(2)证明:由(1)得,ABDACF,HFNADN,在HFN与ADN中,HFNAND,HNFAND,NHFNAD90,HDHF,即BDCF.解:如图,连接DF,延长AB,与DF交于点M.在MAD中,MADMDA45,BMD90.在RtBMD与RtFHD中,MDBHDF,BMDFHD.AB2,AD3,四边形ADEF是正方形,MAMD3.MB321,DB.DH.【方法总结】本题考查了全等三角形的判判定和性质,全等三角形的性质是证明等角、等线段的最为常用的方法;图形的旋转中,对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变;2.(2016云南省昆明市)如图,点D是AB上一点,DF交AC于点E,DE=FE,FCAB求证:AE=CE【考点】全等三角形的判定与性质【分析】根据平行线的性质得出A=ECF,ADE=CFE,再根据全等三角形的判定定理AAS得出ADECFE,即可得出答案【解答】证明:FCAB,A=ECF,ADE=CFE,在ADE和CFE中,ADECFE(AAS),AE=CE3. (2016重庆市A卷7分)如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD求证:AE=FB【分析】根据CEDF,可得ACE=D,再利用SAS证明ACEFDB,得出对应边相等即可【解答】证明:CEDF,ACE=D,在ACE和FDB中,ACEFDB(SAS),AE=FB【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键4. (2016重庆市B卷7分)如图,在ABC和CED中,ABCD,AB=CE,AC=CD求证:B=E【考点】全等三角形的判定与性质【专题】证明题【分析】根据两直线平行,内错角相等可得BAC=ECD,再利用“边角边”证明ABC和CED全等,然后根据全等三角形对应角相等证明即可【解答】证明:ABCD,BAC=ECD,在ABC和CED中,ABCCED(SAS),B=E【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键5. (2016浙江省绍兴市8分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时B与D是否相等,并说明理由(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系【分析】(1)相等连接AC,根据SSS证明两个三角形全等即可(2)分两种情形当点C在点D右侧时,当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意【解答】解:(1)相等理由:连接AC,在ACD和ACB中,ACDACB,B=D(2)设AD=x,BC=y,当点C在点D右侧时,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+817,不合题意,AD=13cm,BC=10cm6.(2016广西桂林3分)如图,在RtACB中,ACB=90,AC=BC=3,CD=1,CHBD于H,点O是AB中点,连接OH,则OH=【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到 ,求得CH= ,根据等腰直角三角形的性质得到AO=OB=OC,A=ACO=BCO=ABC=45,等量代换得到OCH=ABD,根据全等三角形的性质得到OE=OH,BOE=HOC推出HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论【解答】解:在BD上截取BE=CH,连接CO,OE,ACB=90CHBD,AC=BC=3,CD=1,BD= ,CDHBDC,CH= ,ACB是等腰直角三角形,点O是AB中点,AO=OB=OC,A=ACO=BCO=ABC=45,OCH+DCH=45,ABD+DBC=45,DCH=CBD,OCH=ABD,在CHO与BEO中,CHOBEO,OE=OH,BOE=HOC,OCBO,EOH=90,即HOE是等腰直角三角形,EH=BDDHCH=,OH=EH=,故答案为:7.(2016广西桂林8分)如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF【考点】平行四边形的性质;全等三角形的判定与性质【分析】(1)如图所示;(2)由全等三角形的判定定理SAS证得BEODFO,得出全等三角形的对应边相等即可【解答】(1)解:如图所示:(2)证明:四边形ABCD是平行四边形,对角线AC、BD交于点O,OB=OD,OA=OC又E,F分别是OA、OC的中点,OE=OA,OF=OC,OE=OF在BEO与DFO中,BEODFO(SAS),BE=DF8.(2016广西百色8分)已知平行四边形ABCD中,CE平分BCD且交AD于点E,AFCE,且交BC于点F(1)求证:ABFCDE;(2)如图,若1=65,求B的大小【考点】平行四边形的性质;全等三角形的判定与性质【分析】(1)由平行四边形的性质得出AB=CD,ADBC,B=D,得出1=DCE,证出AFB=1,由AAS证明ABFCDE即可;(2)由(1)得1=DCE=65,由平行四边形的性质和三角形内角和定理即可得出结果【解答】(1)证明:四边形ABCD是平行四边形,AB=CD,ADBC,B=D,1=DCE,AFCE,AFB=ECB,CE平分BCD,DCE=ECB,AFB=1,在ABF和CDE中,ABFCDE(AAS);(2)解:由(1)得:1=ECB,DCE=ECB,1=DCE=65,B=D=180265=509.(2016贵州安顺10分)如图,在ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点(1)求证:ABECDF;(2)当四边形AECF为菱形时,求出该菱形的面积【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等第(2)要求菱形的面积,在第(1)问的基础上很快知道ABE为等边三角形这样菱形的高就可求了,用面积公式可求得【解答】(1)证明:在ABCD中,AB=CD,BC=AD,ABC=CDA又BE=EC=BC,AF=DF=AD,BE=DFABECDF(2)解:四边形AECF为菱形时,AE=EC又点E是边BC的中点,BE=EC,即BE=AE又BC=2AB=4,AB=BC=BE,AB=BE=AE,即ABE为等边三角形,(6分)ABCD的BC边上的高为2sin60=,(7分)菱形AECF的面积为2(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以ABE为等边三角形10.(2016黑龙江哈尔滨8分)已知:如图,在正方形ABCD中,点E在边CD上,AQBE于点Q,DPAQ于点P(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长【考点】正方形的性质;全等三角形的判定与性质【分析】(1)根据正方形的性质得出AD=BA,BAQ=ADP,再根据已知条件得到AQB=DPA,判定AQBDPA并得出结论;(2)根据AQAP=PQ和全等三角形的对应边相等进行判断分析【解答】解:(1)正方形ABCDAD=BA,BAD=90,即BAQ+DAP=90DPAQADP+DAP=90BAQ=ADPAQBE于点Q,DPAQ于点PAQB=DPA=90AQBDPA(AAS)AP=BQ(2)AQAP=PQAQBQ=PQDPAP=PQDPBQ=PQ11(2016广西南宁)已知四边形ABCD是菱形,AB=4,ABC=60,EAF的两边分别与射线CB,DC相交于点E,F,且EAF=60(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且EAB=15时,求点F到BC的距离【考点】四边形综合题【分析】(1)结论AE=EF=AF只要证明AE=AF即可证明AEF是等边三角形(2)欲证明BE=CF,只要证明BAECAF即可(3)过点A作AGBC于点G,过点F作FHEC于点H,根据FH=CFcos30,因为CF=BE,只要求出BE即可解决问题【解答】(1)解:结论AE=EF=AF理由:如图1中,连接AC,四边形ABCD是菱形,B=60,AB=BC=CD=AD,B=D=60,ABC,ADC是等边三角形,BAC=DAC=60BE=EC,BAE=CAE=30,AEBC,EAF=60,CAF=DAF=30,AFCD,AE=AF(菱形的高相等),AEF是等边三角形,AE=EF=AF(2)证明:如图2中,BAC=EAF=60,BAE=CAE,在BAE和CAF中,BAECAF,BE=CF(3)解:过点A作AGBC于点G,过点F作FHEC于点H,EAB=15,ABC=60,AEB=45,在RTAGB中,ABC=60AB=4,BG=2,AG=2,在RTAEG中,AEG=EAG=45,AG=GE=2,EB=EGBG=22,AEBAFC,AE=AF,EB=CF=22,AEB=AFC=45,EAF=60,AE=AF,AEF是等边三角形,AEF=AFE=60AEB=45,AEF=60,CEF=AEFAEB=15,在RTEFH中,CEF=15,EFH=75,AFE=60,AFH=EFHAFE=15,AFC=45,CFH=AFCAFH=30,在RTCHF中,CFH=30,CF=22,FH=CFcos30=(22)=3点F到BC的距离为3【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题12(2016贵州毕节)如图,已知ABC中,AB=AC,把ABC绕A点沿顺时针方向旋转得到ADE,连接BD,CE交于点F(1)求证:AECADB;(2)若AB=2,BAC=45,当四边形ADFC是菱形时,求BF的长【考点】旋转的性质;全等三角形的判定与性质;菱形的性质【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;(2)根据BAC=45,四边形ADFC是菱形,得到DBA=BAC=45,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BDDF求出BF的长即可【解答】解:(1)由旋转的性质得:ABCADE,且AB=AC,AE=AD,AC=AB,BAC=DAE,BAC+BAE=DAE+BAE,即CAE=DAB,在AEC和ADB中,AECADB(SAS);(2)四边形ADFC是菱形,且BAC=45,DBA=BAC=45,由(1)得:AB=AD,DBA=BDA=45,ABD为直角边为2的等腰直角三角形,BD2=2AB2,即BD=2,AD=DF=FC=AC=AB=2,BF=BDDF=223.(2016河北)(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:ABCDEF;(2)指出图中所有平行的线段,并说明理由.第21题图解析:证明三角形全等的条件,SSS,SAS,ASA,AAS,直角三角形(HL),此题中只给了边,没有给角,又不是直角三角形,只能用SSS证明,用已知去求。平行线的判定:内错角相等,同旁内角互补,同位角相等。第一问证明了三角形全等,进而可以求角相等,来判定平行。知识点:全等三角形;平行线。13. (2016湖北武汉8分)如图,点B、E、C、F在同一条直线上,ABDE,ACDF,BECF,求证:ABDE【考点】全等三角形的判定和性质【答案】见解析【解析】证明:由BECF可得BCEF,又ABDE,ACDF,故ABCDEF(SSS),则B=DEF,ABDE2. (2016江西10分)如图,将正n边形绕点A顺时针旋转60后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60后,交旋转前的图形于点P,连接PO,我们称OAB为“叠弦角”,AOP为“叠弦三角形”【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(AOP)是等边三角形;(2)如图2,求证:OAB=OAE【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15,24;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为60frac180n(用含n的式子表示)【考点】几何变换综合题【分析】(1)先由旋转的性质,再判断出APDAOD,最后用旋转角计算即可;(2)先判断出RtAEMRtABN,在判断出RtAPMRtAON 即可;(3)先判断出ADOABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出APFAEF,再用旋转角为60,从而得出PAO是等边三角形;(5)用(3)的方法求出正n边形的,“叠弦角”的度数【解答】解:(1)如图1,四ABCD是正方形, 由旋转知:AD=AD,D=D=90,DAD=OAP=60,DAP=DAO,APDAOD(ASA)AP=AO,OAP=60,AOP是等边三角形,(2)如图2,作AMDE于M,作ANCB于N五ABCDE是正五边形, 由旋转知:AE=AE,E=E=108,EAE=OAP=60EAP=EAOAPEAOE(ASA)OAE=PAE在RtAEM和RtABN中,AEM=ABN=72,AE=AB RtAEMRtABN (AAS),EAM=BAN,AM=AN 在RtAPM和RtAON中,AP=AO,AM=AN RtAPMRtAON (HL)PAM=OAN,PAE=OAB OAE=OAB (等量代换) (3)由(1)有,APDAOD,DAP=DAO,在ADO和ABO中,ADOABO,DAO=BAO,由旋转得,DAD=60,DAB=90,DAB=DABDAD=30,DAD=DAB=15,同理可得,EAO=24,故答案为:15,24 (4)如图3,六边形ABCDEF和六边形ABCEF是正六边形,F=F=120,由旋转得,AF=AF,EF=EF,APFAEF,PAF=EAF,由旋转得,FAF=60,AP=AOPAO=FAO=60,PAO是等边三角形故答案为:是 (5)同(3)的方法得,OAB=(n2)180n602=60故答案:6014. (2016四川宜宾)如图,已知CAB=DBA,CBD=DAC求证:BC=AD【考点】全等三角形的判定与性质【分析】先根据题意得出DAB=CBA,再由ASA定理可得出ADBBCA,由此可得出结论【解答】解:CAB=DBA,CBD=DAC,DAB=CBA在ADB与BCA中,ADBBCA(ASA),BC=AD2(2016四川泸州)如图,C是线段AB的中点,CD=BE,CDBE求证:D=E【考点】全等三角形的判定与性质【分析】由CDBE,可证得ACD=B,然后由C是线段AB的中点,CD=BE,利用SAS即可证得ACDCBE,继而证得结论【解答】证明:C是线段AB的中点,AC=CB,CDBE,ACD=B,在ACD和CBE中,ACDCBE(SAS),D=E15(2016四川南充)已知ABN和ACM位置如图所示,AB=AC,AD=AE,1=2(1)求证:BD=CE;(2)求证:M=N【分析】(1)由SAS证明ABDACE,得出对应边相等即可(2)证出BAN=CAM,由全等三角形的性质得出B=C,由AAS证明ACMABN,得出对应角相等即可【解答】(1)证明:在ABD和ACE中,ABDACE(SAS),BD=CE;(2)证明:1=2,1+DAE=2+DAE,即BAN=CAM,由(1)得:ABDACE,B=C,在ACM和ABN中,ACMABN(ASA),M=N【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键16(2016四川攀枝花)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E(1)求证:DE=AB;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积(结果保留)【考点】扇形面积的计算;全等三角形的判定与性质;矩形的性质【分析】(1)根据矩形的性质得出B=90,AD=BC,ADBC,求出DAE=AFB,AED=90=B,根据AAS推出ABFDEA即可;(2)根据勾股定理求出AB,解直角三角形求出BAF,根据全等三角形的性质得出DE=DG=AB=,GDE=BAF=30,根据扇形的面积公式求得求出即可【解答】(1)证明:四边形ABCD是矩形,B=90,AD=BC,ADBC,DAE=AFB,DEAF,AED=90=B,在ABF和DEA中,ABFDEA(AAS),DE=AB;(2)解:BC=AD,AD=AF,BC=AF,BF=1,ABF=90,由勾股定理得:AB=,BAF=30,ABFDEA,GDE=BAF=30,DE=AB=DG=,扇形ABG的面积=【点评】本题考查了弧长公式,全等三角形的性质和判定,解直角三角形,勾股定理,矩形的性质的应用,能综合运用性质进行推理和计算是解此题的关键17.(2016黑龙江龙东8分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当OFE=30时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明【考点】四边形综合题【分析】(1)由AOECOF即可得出结论(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明EOAGOC,OFG是等边三角形,即可解决问题图3中的结论为:CF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习2025年创业扶持政策与市场趋势的结合试题及答案
- 教育精准扶贫项目实施与农村教育人才引进报告
- 水禽水神测试题及答案
- 航空货运企业市场营销策略创新与市场拓展实践:2025年市场格局与发展策略报告
- 管理通史测试题及答案
- 水文统计学试题及答案
- 商丘师范学院《专题设计》2023-2024学年第二学期期末试卷
- 安全文明 的试题及答案
- 宁夏银川市金凤区六盘山高级中学2025届高三第三次调研测试物理试题试卷含解析
- 葡萄酒行业产区特色品牌打造:2025年国际化发展路径报告
- 研发成果商业化转化(资料)
- 高速铁路关键技术
- 丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细-且运行无误)
- 情境学习理论在教育中的应用
- 血糖监测操作流程及考核标准(100分)
- 部编版语文二年级下册第6单元奇妙的大自然大单元整体作业设计
- 2023年住院医师考试-康复医学住院医师考试题库(含答案)
- 高中音乐鉴赏 《黄河大合唱》
- 2022年贵州贵阳市中考英语真题
- FZ/T 32001-2018亚麻纱
- 《大数据环境下的网络安全问题探讨(论文)8000字》
评论
0/150
提交评论