



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(十三) 对数函数A级保大分专练1函数y的定义域是()A1,2B1,2)C. D.解析:选C由即解得x.2若函数yf(x)是函数yax(a0,且a1)的反函数,且f(2)1,则f(x)()Alog2x B.Clogx D2x2解析:选A由题意知f(x)logax(a0,且a1)f(2)1,loga21.a2.f(x)log2x.3如果logxlogy0,那么()Ayx1 Bxy1C1xy D1yx解析:选Dlogxlogyy1.4(2019海南三市联考)函数f(x)|loga(x1)|(a0,且a1)的大致图象是()解析:选C函数f(x)|loga(x1)|的定义域为x|x1,且对任意的x,均有f(x)0,结合对数函数的图象可知选C.5(2018惠州调研)若a20.5,blog3,clog2sin,则a,b,c的大小关系为()Abca BbacCcab Dabc解析:选D依题意,得a1,0blog3log1,而由0sin1,得cbc.6设函数f(x)loga|x|(a0,且a1)在(,0)上单调递增,则f(a1)与f(2)的大小关系是()Af(a1)f(2) Bf(a1)f(2)Cf(a1)f(2) D不能确定解析:选A由已知得0a1,所以1a1f(2)7已知a0,且a1,函数yloga(2x3)的图象恒过点P.若点P也在幂函数f(x)的图象上,则f(x)_.解析:设幂函数为f(x)x,因为函数yloga(2x3)的图象恒过点P(2,),则2,所以,故幂函数为f(x)x.答案:x8已知函数f(x)loga(xb)(a0,且a1)的图象过两点(1,0)和(0,1),则logba_.解析:f(x)的图象过两点(1,0)和(0,1)则f(1)loga(1b)0,且f(0)loga(0b)1,所以即所以logba1.答案:19(2019武汉调研)函数f(x)loga(x24x5)(a1)的单调递增区间是_解析:由函数f(x)loga(x24x5),得x24x50,得x5.令m(x)x24x5,则m(x)(x2)29,m(x)在2,)上单调递增,又由a1及复合函数的单调性可知函数f(x)的单调递增区间为(5,)答案:(5,)10设函数f(x)若f(a)f(a),则实数a的取值范围是_解析:由f(a)f(a)得或即或解得a1或1a0.答案:(1,0)(1,)11求函数f(x)log2log(2x)的最小值解:显然x0,f(x)log2log(2x)log2xlog2(4x2)log2x(log242log2x)log2x(log2x)22,当且仅当x时,有f(x)min.12设f(x)loga(1x)loga(3x)(a0,且a1),且f(1)2.(1)求a的值及f(x)的定义域;(2)求f(x)在区间上的最大值解:(1)f(1)2,loga42(a0,且a1),a2.由得1x3,函数f(x)的定义域为(1,3)(2)f(x)log2(1x)log2(3x)log2(1x)(3x)log2(x1)24,当x(1,1时,f(x)是增函数;当x(1,3)时,f(x)是减函数,故函数f(x)在上的最大值是f(1)log242.B级创高分自选1已知函数f(x)logax(a0,且a1)满足ff,则f0的解集为()A(0,1) B(,1)C(1,) D(0,)解析:选C因为函数f(x)logax(a0,且a1)在(0,)上为单调函数,而f,所以f(x)logax在(0,)上单调递减,即0a0,得011,故选C.2若函数f(x)loga(a0,且a1)在区间内恒有f(x)0,则f(x)的单调递增区间为_解析:令Mx2x,当x时,M(1,),f(x)0,所以a1,所以函数ylogaM为增函数,又M2,因此M的单调递增区间为.又x2x0,所以x0或x0时,f(x)logx.(1)求函数f(x)的解析式;(2)解不等式f(x21)2.解:(1)当x0,则f(x)log(x)因为函数f(x)是偶函数,所以f(x)f(x)log(x),所以函数f(x)的解析式为f(x)(2)因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省江门市第九中学2024-2025学年九年级上学期期中考试化学试卷(含答案)
- 电生理知识培训课件
- 电焊课件模板
- 北中高三期末考试试卷及答案
- 北京高考化学考试真题及答案
- 3-Oxoeicosa-cis-cis-11-14-dienoyl-CoA-3-Oxoeicosa-cis-cis-11-14-dienoyl-coenzyme-A-生命科学试剂-MCE
- 北海物理中考试卷真题及答案
- 高温用车安全知识培训课件
- 保利地产入职考试试题及答案
- 中考山脉考试题及答案
- 农业模型PPT讲稿课件
- 公开课教学评价表
- 消防验收规范标准(最新完整版)19844
- 教研工作手册
- 电工电子技术基础教学大纲
- 独树一帜的中国画(课堂PPT)
- 制钵机的设计(机械CAD图纸)
- 生产设备控制程序
- 艾草深加工项目可行性研究报告写作范文
- LCM不良命名规范
- 《融资租赁业务介绍》PPT课件.ppt
评论
0/150
提交评论