




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第八章,第五节,机动 目录 上页 下页 返回 结束,一、一个方程所确定的隐函数 及其导数,二、方程组所确定的隐函数组 及其导数,隐函数的求导方法,本节讨论 :,1) 方程在什么条件下才能确定隐函数 .,例如, 方程,当 C 0 时, 能确定隐函数;,当 C 0 时, 不能确定隐函数;,2) 在方程能确定隐函数时,研究其连续性、可微性,及求导方法问题 .,机动 目录 上页 下页 返回 结束,一、一个方程所确定的隐函数及其导数,定理1. 设函数,则方程,单值连续函数 y = f (x) ,并有连续,(隐函数求导公式),定理证明从略,仅就求导公式推导如下:, 具有连续的偏导数;,的某邻域内可唯一确定一个,在点,的某一邻域内满足,满足条件,机动 目录 上页 下页 返回 结束,导数,两边对 x 求导,在,的某邻域内,则,机动 目录 上页 下页 返回 结束,若F( x , y ) 的二阶偏导数也都连续,二阶导数 :,则还有,机动 目录 上页 下页 返回 结束,例1. 验证方程,在点(0,0)某邻域,可确定一个单值可导隐函数,解: 令,连续 ,由 定理1 可知,导的隐函数,则,在 x = 0 的某邻域内方程存在单值可,且,机动 目录 上页 下页 返回 结束,并求,机动 目录 上页 下页 返回 结束,两边对 x 求导,两边再对 x 求导,令 x = 0 , 注意此时,导数的另一求法, 利用隐函数求导,机动 目录 上页 下页 返回 结束,定理2 .,若函数,的某邻域内具有连续偏导数 ,则方程,在点,并有连续偏导数,定一个单值连续函数 z = f (x , y) ,定理证明从略, 仅就求导公式推导如下:,满足, 在点,满足:,某一邻域内可唯一确,机动 目录 上页 下页 返回 结束,两边对 x 求偏导,同样可得,则,机动 目录 上页 下页 返回 结束,例2. 设,解法1 利用隐函数求导,机动 目录 上页 下页 返回 结束,再对 x 求导,解法2 利用公式,设,则,两边对 x 求偏导,机动 目录 上页 下页 返回 结束,例3.,设F( x , y)具有连续偏导数,解法1 利用偏导数公式.,确定的隐函数,则,已知方程,机动 目录 上页 下页 返回 结束,故,对方程两边求微分:,解法2 微分法.,机动 目录 上页 下页 返回 结束,二、方程组所确定的隐函数组及其导数,隐函数存在定理还可以推广到方程组的情形.,由 F、G 的偏导数组成的行列式,称为F、G 的雅可比( Jacobi )行列式.,以两个方程确定两个隐函数的情况为例 ,即,雅可比 目录 上页 下页 返回 结束,定理3.,的某一邻域内具有连续偏,设函数,则方程组,的单值连续函数,且有偏导数公式 :, 在点,的某一邻域内可唯一确定一组满足条件,满足:,导数;,机动 目录 上页 下页 返回 结束,定理证明略.仅推导偏导数公式如下:,(P34-P35),机动 目录 上页 下页 返回 结束,有隐函数组,则,两边对 x 求导得,设方程组,在点P 的某邻域内,公式 目录 上页 下页 返回 结束,故得,系数行列式,同样可得,机动 目录 上页 下页 返回 结束,例4. 设,解:,方程组两边对 x 求导,并移项得,求,练习: 求,机动 目录 上页 下页 返回 结束,答案:,由题设,故有,例5.设函数,在点(u,v) 的某一,1) 证明函数组,( x, y) 的某一邻域内,2) 求,解: 1) 令,对 x , y 的偏导数.,在与点 (u, v) 对应的点,邻域内有连续的偏导数,且,唯一确定一组单值、连续且具有,连续偏导数的反函数,机动 目录 上页 下页 返回 结束,式两边对 x 求导, 得,机动 目录 上页 下页 返回 结束,则有,由定理 3 可知结论 1) 成立.,2) 求反函数的偏导数.,机动 目录 上页 下页 返回 结束,从方程组解得,同理, 式两边对 y 求导, 可得,机动 目录 上页 下页 返回 结束,从方程组解得,同理, 式两边对 y 求导, 可得,例5的应用: 计算极坐标变换,的反变换的导数 .,同样有,所以,由于,机动 目录 上页 下页 返回 结束,内容小结,1. 隐函数( 组) 存在定理,2. 隐函数 ( 组) 求导方法,方法1. 利用复合函数求导法则直接计算 ;,方法2. 利用微分形式不变性 ;,方法3. 代公式,思考与练习,设,求,机动 目录 上页 下页 返回 结束,提示:,机动 目录 上页 下页 返回 结束,解法2. 利用全微分形式不变性同时求出各偏导数.,作业 P37 3 , 6, 7 , 9 , 10(1); (3),11,第六节 目录 上页 下页 返回 结束,由d y, d z 的系数即可得,备用题,分别由下列两式确定 :,又函数,有连续的一阶偏导数 ,1. 设,解: 两个隐函数方程两边对 x 求导, 得,(2001考研),机动 目录 上页 下页 返回 结束,解得,因此,2. 设,是由方程,和,所确定的函数 , 求,解法1 分别在各方程两端对 x 求导, 得,(99考研),机动 目录 上页 下页 返回 结束,解法2 微分法.,对各方程两边分别求微分:,化简得,消去,机动 目录 上页 下页 返回 结束,可得,解:,二元线性代数方程组解的公式,雅可比(1804 1851),德国数学家.,他在数学方面最主要,的成就是和挪威数学家阿贝儿相互独,地奠定了椭圆函数论的基础.,他对行列,式理论也作了奠基性的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025辽宁抚顺新抚钢有限责任公司招聘拟聘用人员考前自测高频考点模拟试题及1套完整答案详解
- 2025年临沂郯城县部分医疗卫生事业单位招募见习人员的模拟试卷及答案详解(名师系列)
- 2025年福建省厦门海沧华附实验小学招聘1人考前自测高频考点模拟试题及一套完整答案详解
- 2025江苏苏州市昆山高新集团有限公司选聘子企业负责人1人模拟试卷及完整答案详解一套
- 2025年合肥综合性国家科学中心大健康研究院招聘4人模拟试卷及答案详解(典优)
- 2025年湖南常德津市市人民医院公开招聘专业技术人员16人考前自测高频考点模拟试题完整参考答案详解
- 2025年河北廊坊大厂县中医医院公开招聘医师10人考前自测高频考点模拟试题完整答案详解
- 2025河南省机场集团有限公司招聘毕业生考前自测高频考点模拟试题及答案详解(名校卷)
- 2025福建福州市水路运输事业发展中心招聘编外人员1人模拟试卷及答案详解1套
- 2025年福建省福州市鼓楼区总医院成员单位招聘18人考前自测高频考点模拟试题含答案详解
- 塔吊租赁服务技术实施方案技术标
- 员工组织承诺的形成过程内部机制和外部影响基于社会交换理论的实证研究
- 优质课件:几代中国人的美好夙愿
- 2023年真空镀膜机行业市场分析报告及未来发展趋势
- 物业礼仪规范培训方案
- 约谈记录表模板
- 外科护理学阑尾炎教案
- 注塑成型技术培训之工艺理解课件
- 广西佑太药业有限责任公司医药中间体项目环评报告书
- 海绵城市公园改造施工组织设计
- 上体自编教材-体育运动概论-模拟
评论
0/150
提交评论