浙江大学材料热力学与动力学.ppt_第1页
浙江大学材料热力学与动力学.ppt_第2页
浙江大学材料热力学与动力学.ppt_第3页
浙江大学材料热力学与动力学.ppt_第4页
浙江大学材料热力学与动力学.ppt_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter 1 : Thermodynamics and Phase Diagrams,1-1,Chapter 1 : Thermodynamics and Phase Diagrams,1-2,1.0.1 Thermodynamics Systems,Chapter 1 : Thermodynamics and Phase Diagrams,1-3,Open System can exchange mass, heat and work with its surroundings Closed System no mass exchange, heat and work exchange possible Isolated System no mass, no heat, no work exchange,Chapter 1 : Thermodynamics and Phase Diagrams,1-4,A. Energy, Heat and Work,The energy of an isolated system is constant The work done on a thermally isolated system is independent of the type of work and the route,1.0.2 The First Law of Thermodynamics,Chapter 1 : Thermodynamics and Phase Diagrams,1-5,Chapter 1 : Thermodynamics and Phase Diagrams,1-6,Chapter 1 : Thermodynamics and Phase Diagrams,1-7,Chapter 1 : Thermodynamics and Phase Diagrams,1-8,Chapter 1 : Thermodynamics and Phase Diagrams,1-9,1.0.3 The Second Law of Thermodynamics,Chapter 1 : Thermodynamics and Phase Diagrams,1-10,Chapter 1 : Thermodynamics and Phase Diagrams,1-11,2 parts of DS (inner and external),DSinner : from inner processes DSexner : due to heat exchange,DSexter,reversible process : DS i = 0, DS = DS e irreversible process : DS i 0, DS DS e adiabatic process : DS e = 0, DS = DS i irr. adiabatic process : DS 0 rev. adiabatic process : DS = 0,Chapter 1 : Thermodynamics and Phase Diagrams,1-12,The Second Law of Thermodynamics,The entropy of a closed system can not decrease.,Clausius: Heat can not flow automatically from cold side to hot side.,perpetual machines,type I,Planck: Such a process is impossible if its only result were to exchange heat to work.,type II,Chapter 1 : Thermodynamics and Phase Diagrams,1-13,Mr. Tompkins in Paperback G. Gamow Cambridge University Press, 1965,Heat can not flow automatically from cold side to hot side !,Chapter 1 : Thermodynamics and Phase Diagrams,1-14,1.1 Equilibrium in a Closed System,Chapter 1 : Thermodynamics and Phase Diagrams,1-15,How is system stability measured ? by its Gibbs free energy (at const. T and P),G = H - TS,(1.1),H : a measure of the heat content of the system ( H = U + PV ) S : a measure of the randomness of the system,low T : TS small, solids are most stable (strongest atomic binding, low H) high T : TS dominates, liquids or gases are stable (atoms more free, high S),Chapter 1 : Thermodynamics and Phase Diagrams,1-16,Stable, Metastable and Unstable,G,dG = 0,B,A,C,dG = 0,dG = 0,an arbitrary state parameter,B,A,C,Stable: graphite, single crystal silicon,Metastable: diamond, amorphous,Unstable: super-cooling liquid (nucleation),B,A,C,Chapter 1 : Thermodynamics and Phase Diagrams,1-17,Possibility and Realizability : Thermodynamics and Kinetics,G,B,A,C,G1,G2,Energy Hump,DG = G2 G1 0 : only possible for the transformation from B to A Amorphous Alloy (short-lived), Diamond (long-lived) Temperature : kinetic key (vibration frequency and amplitude),Chapter 1 : Thermodynamics and Phase Diagrams,1-18,Chapter 1 : Thermodynamics and Phase Diagrams,1-19,1.2 Single Component Systems,Chapter 1 : Thermodynamics and Phase Diagrams,1-20,Chapter 1 : Thermodynamics and Phase Diagrams,1-21,Chapter 1 : Thermodynamics and Phase Diagrams,1-22,Hsolid,Hliquid,Gsolid,Gliquid,T (K),H, G,298,at all temperature: H liquid H solid since G = H - TS G liquid G solid at low T G liquid G solid at high T,Tm,DHm,at Tm : H liquid - H solid = DHm G liquid = G solid,solid stable,liquid stable,H,G,Chapter 1 : Thermodynamics and Phase Diagrams,1-23,Chapter 1 : Thermodynamics and Phase Diagrams,1-24,Tm,T,DG,G,GS,GL,Free energies,at Tm,1.2.3 The Driving Force for Solidification,G L = H L - TS L,G S = H S - TS S,DG = DH - TDS = 0,for most metals L R (8.3 J mol-1K-1),at T with small DT , ( Tm - T = DT ),can be ignored, DH & DS independent on T,difference on,Chapter 1 : Thermodynamics and Phase Diagrams,1-25,1.3 Binary Solutions,1.3.1 The Gibbs Free Energy of Binary Solutions,XA mole A,XB mole B,XA + XB = 1,MIX,1 mole A+B,G1 = GAXA + GBXB,G2 = G1 + DGmix,DGmix : mixing free energy,DGmix = DHmix - TDSmix,Chapter 1 : Thermodynamics and Phase Diagrams,1-26,1.3.2 Ideal Solutions,DHmix = 0 DSmix = -R ( XAlnXA + XBlnXB ) DGmix = RT ( XAlnXA + XBlnXB ),Note: Since XA and XB are 1, DSmix is positive, DGmix is negative.,XB,0,1,Molar free energy G,GA,GB,G 0,DGmix,At higher temperature,Low T,High T,mixing free energy DGmix,XB,0,1,the absolute free energy is not of interest!,Chapter 1 : Thermodynamics and Phase Diagrams,1-27,1.3.3 Chemical Potential,Multi-Component System,dnA,constant T and P,total free energy of the system : G G + dG if dnA small enough, dG proportional to dnA, or : dG = mAdnA,Definition: Chemical potential , or Partial molar free energy,Note: G: total free energy of the system G: molar free energy (one mol),Chapter 1 : Thermodynamics and Phase Diagrams,1-28,geometric meaning of chemical potential,A,B,XB,mA,mB,G,GB,GA,RT lnXA for ideal solution,RT lnXB for ideal solution,G,tangent line at XB,Chapter 1 : Thermodynamics and Phase Diagrams,1-29,Chapter 1 : Thermodynamics and Phase Diagrams,1-30,A-A,B-B,Before mixing,B,B,A,A,A-B,B,A,B,A,A-B,After mixing,eAA + eBB,2eAB,Energy change per A-B bond : e = eAB - (eAA + eBB) AB bonds per mol : PAB = Na z XAXB Therefore : DHmix = w XAXB , where w = Na ze,0,DHmix,XB,1,w,Chapter 1 : Thermodynamics and Phase Diagrams,1-31,Chapter 1 : Thermodynamics and Phase Diagrams,1-32,Chapter 1 : Thermodynamics and Phase Diagrams,1-33,Chapter 1 : Thermodynamics and Phase Diagrams,1-34,Chapter 1 : Thermodynamics and Phase Diagrams,1-35,1.4 Equilibrium in Heterogeneous Systems,Chapter 1 : Thermodynamics and Phase Diagrams,1-36,Chapter 1 : Thermodynamics and Phase Diagrams,1-37,Heterogeneous Equilibrium,Condition of Equilibrium in a Heterogeneous System continue : about the common tangent line,A,B,a,P,and :,Chemical potentials of component A and B in a phase with the composition of,and :,Chemical potentials of component A and B in b phase with the composition of,b,Q,Chapter 1 : Thermodynamics and Phase Diagrams,1-38,1.5 Binary phase diagrams,Chapter 1 : Thermodynamics and Phase Diagrams,1-39,Chapter 1 : Thermodynamics and Phase Diagrams,1-40,Chapter 1 : Thermodynamics and Phase Diagrams,1-41,1.5.4 Fe-Si System,Chapter 1 : Thermodynamics and Phase Diagrams,1-42,1.5.5 Fe-C System,Chapter 1 : Thermodynamics and Phase Diagrams,1-43,1.6.1 The solid solvus,Equilibrium T1 :,For dilute solution of B in a :,1.6 Thermodynamics and Phase Diagrams,Chapter 1 : Thermodynamics and Phase Diagrams,1-44,Gibbs-Helmhotz equation:,Enthalpy change when 1 mol b-form B atoms dissolve in a phase to make a dilute solution,DHB : enthalpy difference between the b-form B and a-form B W : energy change of a-form B dissolved into a phase,Therefore:,Chapter 1 : Thermodynamics and Phase Diagrams,1-45,Chapter 1 : Thermodynamics and Phase Diagrams,1-46,Chapter 1 : Thermodynamics and Phase Diagrams,1-47,Chapter 1 : Thermodynamics and Phase Diagrams,1-48,Chapter 1 : Thermodynamics and Phase Diagrams,1-49,1.7 Thermodynamics during Phase Transformations,Chapter 1 : Thermodynamics and Phase Diagrams,1-50,The driving force of solidification,Y0,Liquid,Solid a,L,S,P, T1,G,x,x,xL,xS,Q,Lever Rule,xS,xL,1 mol x, GP,initial,after equilibrium,xS mol xS, GS,xL mol xL, GL,DG = GP - GQ,DG : per mol solution not per mol solid nuclei,R,xS mol xS, GR,DG = 0,DG1 = GR - GS,DG1 : per mol solid nuclei,Free energy change for 1 mol solution: DG1xS = DG,Chapter 1 : Thermodynamics and Phase Diagrams,1-51,The driving force of nucleation,Y0,Liquid,Solid a,L,S,P, T1,G,x,x,xL,xS,Q,During nucleation, xL will not change. This means DG1 = GR - GS is not the nucleation driving force.,If we move point L to P, we see the free energy per mol nuclei will be at point T (insect point of the tangent line Y at P with xS).,R,T,Y,Chapter 1 : Thermodynamics and Phase Diagrams,1-52,The driving force of nucleation,Y0,Liquid,Solid a,L,S,P, T1,G,x,x,xL,xS,Q,R,T,Y,DG2 = GT - GS is the driving force per mol nuclei with the composition of xS.,But the composition of initial nuclei could differ from xS, if larger driving force available other than xS.,T,S,x,Example: nuclei with the composition of x have a driving force of GT - GS , which is larger than those at xS.,What is the maximal driving force ?,Chapter 1 : Thermodynamics and Phase Diagrams,1-53,The maximal driving force,Drawing a tangent line on the liquid

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论