基于有限元比亚迪F3制动器的设计【5张CAD图纸和说明书】
收藏
资源目录
压缩包内文档预览:
编号:21534426
类型:共享资源
大小:11.68MB
格式:RAR
上传时间:2019-08-17
上传人:俊****计
认证信息
个人认证
束**(实名认证)
江苏
IP属地:江苏
40
积分
- 关 键 词:
-
5张CAD图纸和说明书
基于
有限元
f3
制动器
设计
cad
图纸
以及
说明书
仿单
- 资源描述:
-
基于有限元比亚迪F3制动器的设计【5张CAD图纸和说明书】,5张CAD图纸和说明书,基于,有限元,f3,制动器,设计,cad,图纸,以及,说明书,仿单
- 内容简介:
-
毕业论文指导教师评分表学生姓名院系专业、班级指导教师姓名职称从事专业是否外聘是否题目名称基于有限元比亚迪F3制动器的设计序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;选题的理论意义或实际价值103查阅文献资料能力;综合运用知识能力154研究方案的设计能力;研究方法和手段的运用能力;外文应用能力255文题相符程度;写作水平156写作规范性;篇幅;成果的理论或实际价值;创新性157科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 指导教师签字: 年 月 日毕业设计指导教师评分表学生姓名院系专业、班级指导教师姓名职称从事专业是否外聘是否题目名称基于有限元比亚迪F3制动器的设计序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力205计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)106插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)58科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 指导教师签字: 年 月 日 毕业论文评阅人评分表学生姓名专业班级指导教师姓名职称题目基于有限元比亚迪F3制动器的设计评阅组或预答辩组成员姓名出席人数序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度152题目工作量;选题的理论意义或实际价值103查阅文献资料能力;综合运用知识能力204研究方案的设计能力;研究方法和手段的运用能力;外文应用能力255文题相符程度;写作水平156写作规范性;篇幅;成果的理论或实际价值;创新性15得 分 Y= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 评阅人或预答辩组长签字: 年 月 日注:毕业设计(论文)评阅可以采用2名评阅教师评阅或集体评阅或预答辩等形式。 毕业设计评阅人评分表学生姓名专业班级指导教师姓名职称题目基于有限元比亚迪F3制动器的设计评阅组或预答辩组成员姓名出席人数序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力255计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)156插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)5得 分 Y= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 评阅人或预答辩组长签字: 年 月 日注:毕业设计(论文)评阅可以采用2名评阅教师评阅或集体评阅或预答辩等形式。毕业论文答辩评分表学生姓名专业班级指导教师职 称题目 基于有限元比亚迪F3制动器的设计答辩时间月 日 时答辩组成员姓名出席人数序号评 审 指 标满分得分1选题与专业培养目标的符合程度,综合训练情况,题目难易度、工作量、理论意义或价值102研究方案的设计能力、研究方法和手段的运用能力、综合运用知识的能力、应用文献资料和外文的能力203论文撰写水平、文题相符程度、写作规范化程度、篇幅、成果的理论或实际价值、创新性154毕业论文答辩准备情况55毕业论文自述情况206毕业论文答辩回答问题情况30总 分 Z= 答辩过程记录、评语:自述思路与表达能力:好 较好 一般 较差 很差回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 答辩组长签字: 年 月 日毕业设计答辩评分表学生姓名专业班级指导教师职 称题目 基于有限元比亚迪F3制动器的设计答辩时间月 日 时答辩组成员姓名出席人数序号评 审 指 标满分得分1选题与专业培养目标的符合程度,综合训练情况,题目难易度、工作量、与实际的结合程度102设计(实验)能力、对实验结果的分析能力、计算能力、综合运用知识能力103应用文献资料、计算机、外文的能力104设计说明书撰写水平、图纸质量,设计的规范化程度(设计栏目齐全合理、SI制的使用等)、实用性、科学性和创新性155毕业设计答辩准备情况56毕业设计自述情况207毕业设计答辩回答问题情况30总 分 Z= 答辩过程记录、评语:自述思路与表达能力:好 较好 一般 较差 很差回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 答辩组长签字: 年 月 日毕业设计(论文)成绩评定表学生姓名性别院系专业班级设计(论文)题目基于有限元比亚迪F3制动器的设计平时成绩评分(开题、中检、出勤)指导教师姓名职称指导教师评分(X)评阅教师姓名职称评阅教师评分(Y)答辩组组长职称答辩组评分(Z)毕业设计(论文)成绩百分制五级分制答辩委员会评语:答辩委员会主任签字(盖章): 院系公章: 年 月 日注:1、平时成绩(开题、中检、出勤)评分按十分制填写,指导教师、评阅教师、答辩组评分按百分制填写,毕业设计(论文)成绩百分制=W+0.2X+0.2Y+0.5Z 2、评语中应当包括学生毕业设计(论文)选题质量、能力水平、设计(论文)水平、设计(论文)撰写质量、学生在毕业设计(论文)实施或写作过程中的学习态度及学生答辩情况等内容的评价。优秀毕业设计(论文)推荐表题 目基于有限元比亚迪F3制动器的设计类别学生姓名院(系)、专业、班级指导教师职 称讲师设计成果明细:答辩委员会评语:答辩委员会主任签字(盖章): 院、系公章: 年 月 日备 注: 注:“类别”栏填写毕业论文、毕业设计、其它SY-025-BY-2毕业设计(论文)任务书学生姓名院系专业、班级指导教师姓名职称讲师从事专业是否外聘是否题目名称基于有限元比亚迪F3制动器的设计一、设计(论文)目的、意义 制动器是汽车的重要部件,其制动性能是确保车辆行驶的主、被动安全性和提升车辆行驶的动力性决定因素之一。应用Pro/E 软件建立制动器主要零件的实体模型,然后利用Ansys软件对制动器摩擦衬片有限元分析,为汽车制动器的设计与研究提供了一种方法,可缩该制动器的研发周期, 降低产品的研发成本, 并为进一步的结构优化设计、制造及运动分析奠定了基础。二、设计(论文)内容、技术要求(研究方法)(一)设计内容 根据比亚迪F3轿车的主要参数:整备质量1200kg、质心高度600mm、轴距2600mm、轮距1480mm、最高车速180km/h、轮胎规格195/60R15,确定制动器的总体结构,对制动器的主要参数进行计算及强度校和,利用Pro/E软件建立制动器三维模型装配图,通过干涉检查验证制动器设计的正确性,利用Ansys软件对摩擦衬片有限元分析。(二)研究方法1、参考相关资料,对比各种制动器优缺点,初步确定设计方案。2、实地考察相关类型的车,为最终设计方案提供依据。3、利用Pro/E软件建立制动器的三维模型, 利用Ansys软件对摩擦衬片有限元分析。三、设计(论文)完成后应提交的成果(一)计算说明部分完成设计说明书1.5万字。利用Pro/E软件建立制动器三维模型装配图,利用Ansys软件对摩擦衬片有限元分析。(二)图纸部分制动器装配图及零件图共一套。四、设计(论文)进度安排(1)调研、查阅相关资料、完成开题报告 第12周(2月28日3月13日) (2)确定总体设计方案 第34周(3月14日3月27日) (3)对制动器参数进行设计第57周(3月28日4月17日) (4)绘制制动器的AutoCAD装配图、零件图及三维装配模型、零件模型 第89周(4月18日5月1日) (5)Ansys软件对制动器摩擦衬片有限元分析第1012周(5月2日5月22日) (5)书写设计说明书第1314周(5月23日6月5日) (6)设计审核、修改 第1516周(6月6日6月19日) (7)毕业设计答辩准备及答辩 第17周(6月20日6月26日) 五、主要参考资料1蒋崇贤,何明辉专用汽车设计 武汉工业大学出版社2龚曙光.ANSYS在应力分析设计中的应用.CAD/CAM计算机辅助设计与制造.2001,(7):70-803工程中的有限元方法(第3版)机械工业出版社,20044黄天泽,黄金陵汽车车身结构与设计机械工业出版社,20005孙桓主编.机械设计.机械工业出版社出版6余志生 汽车理论M,机械工业出版社,19877陈家瑞主编.汽车构造.人民交通出版社出版8吴镇著.理论力学.上海:上海交通大学出版社,19979吕慧瑛.机械设计基础.北京:清华大学出版社,2002六、备注指导教师签字:年 月 日教研室主任签字: 年 月 日The Graduation Design for Bachelors DegreeThe Design of BYD F3 Brakes Based On Finite elemengtCandidate:Specialty:Class:Supervisor:本科学生毕业设计 基于有限元比亚迪F3制动器的设计系部名称: 专业班级: 学生姓名: 指导教师: 职 称: 毕业设计(论文)开题报告设计(论文)题目:基于有限元比亚迪F3制动器的设计 院 系 名 称: 专 业 班 级: 学 生 姓 名: 导 师 姓 名: 开 题 时 间: 指导委员会审查意见: 签字: 年 月 日SY-025-BY-3毕业设计开题报告学生姓名院系专业、班级指导教师姓名职称从事专业是否外聘是否题目名称基于有限元比亚迪F3制动器的设计一、课题研究现状,选题的目的、依据和意义1、研究现状 虽然在汽车制动器领域,盘式制动器将逐步取代鼓式制动器是必然的趋势,但在现阶段,鼓式制动器依然占据着很重要的位置。相对盘式制动器结构复杂,对制动钳、管路系统要求高,造价高等缺点,鼓式制动器不仅结构较简单、成本低,而且符合传统设计,所以在轻、重型载货汽车上,鼓式制动器还是在大量使用的。 鼓式相对盘式,其制动效能和散热性要差许多。鼓式制动器的制动力稳定性差,在不同路面上,制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量,制动蹄和制动鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙。针对以上缺点,现在鼓式制动器则采取一些改进措施: 1)合理确定制动鼓的直径 2)合理确定摩擦衬片宽度 3)合理确定轮毂散热结构 4)合理选择轮胎和轮辋5)加装气门嘴固定卡6)采用目前较先进的技术,以防车轮过热,如采用制动间隙自动调整臂、使用缓速器。设计中采用的是领从蹄式制动器,兼顾了制动器效能因数和制动器效能的稳定性。它的工作原理是利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势,亦即由制动踏板的踏板力通过推杆和主缸活塞,使主缸油液在一定压力下流入轮缸,并通过两轮缸活塞推使制动蹄绕支承销转动,上端向两边分开而以其摩擦片压紧在制动鼓的内圆面上。不转的制动蹄对旋转制动鼓产生摩擦力矩,从而产生制动力,使车轮减速直至停车。鼓式制动器是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。目前使用计算机辅助设计已经成为如今研究现状,也必将成为以后的发展趋势,计算机辅助设计的使用可降低工程设计成本的13%30%,减少产品设计到投产的时间30%60%,增加分析问题的深度和广度335倍,提高作业生产率40%70%,提高设备利用率23倍,减少加工过程30%60%,降低人工成本5%20%。以PTC公司的Pro/Engineer为代表的基于特征的参数化设计系统的问市给机械设计自动化奠定了坚实的现实基础,使得它变得其实可行。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。我国在九五计划期间大力推广CAD技术,机械行业大中型企业CAD的普及率从八五末的20%提高到目前的70%。随着企业CAD应用的普及,工程技术人员已逐步甩掉图板,而将主要精力投身如何优化设计,提高工程和产品质量,计算机辅助工程分析(CAE,Computer Aided Engineering)方法和软件将成为关键的技术要素。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面:增加设计功能,减少设计成本;缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。汽车的任何零部件都可以根据其所要求的性能对其进行有限元分析,寻找最优的设计方案, 以做到既能降低生产成本, 又能提高其性能, 达到最优的结合。例如,美国的ANSYS 公司已经利用有限元分析软件ANSYS 进行了钢板弹簧精确设计; 上海汇众汽车制造有限公司利用有限元分析软件ANSYS 进行油门踏板杆材料的断裂优化分析以解决国产化材料的替代等等。汽车工业代表着一个国家制造业发展的水平,世界经济大国的经济发展无一不与汽车工业有着极为密切的关系;作为世界经济大国的美国的汽车就一直处于汽车行业领头地位。作为制造业的中坚,汽车工业一直是以有限元为主的CAE技术应用的先锋。既然汽车的发展与有限元技术的应用有如此密切的联系,故必须要加大对此项技术的投入;不但要加大资金的投入,而且一定要加大人力资源的投入,培养一批熟练掌握并能更进一步开发此项技术的人才。2、依据、目的和意义汽车制动性能是确保车辆行驶的主、被动安全性和提升车辆行驶的动力性决定因素之一。汽车作为陆地上的现代重要交通工具,由许多保证其性能的大部件,即所谓“总成”组成,制动系就是其中一个重要的总成,它直接影响汽车的安全性。随着高速公路的快速发展和车流密度的日益增大,交通事故也不断增加。据有关资料介绍,在由于车辆本身的问题而造成的交通事故中,制动系统故障引起的事故为总数的45%。可见,制动系统是保证行车安全的极为重要的一个系统。此外,制动系统的好坏还直接影响车辆的平均车速和车辆的运输效率,也就是保证运输经济效益的重要因素。制动系既可以使行驶中的汽车减速,又可保证停车后的汽车能驻留原地不动。由此可见,汽车制动系对于汽车行驶的安全性,停车的可靠性和运输经济效益起着重要的保证作用。当今,随着高速公路网的不断扩展、汽车车速的提高以及车流密度的增大,对汽车制动系的工作可靠性要求显得日益重要。只有制动性能良好和制动系工作可靠的汽车才能充分发挥出其高速行驶的动力性能并保证行驶的安全性。由此可见,制动系是汽车非常重要的组成部分,从而对汽车制动系的机构分析与设计计算也就显得非常重要了。鼓式制动器是应用非常广泛的一种制动器,有其优良的制动效果及简单的结构形式。应用Pro/E 软件建立鼓式制动器主要零件的实体模型, 并完成虚拟装配,然后利用Ansys软件对制动器摩擦衬片有限元分析,为鼓式制动器的设计与研究提供了一种方法,,可缩短鼓式制动器的研发周期, 降低产品的研发成本, 并为以后进一步的结构优化设计、制造及运动分析奠定了基础。对于我来说,车辆工程本科毕业能做好这样一个设计,对今后的工作是非常宝贵的一次设计经验,能为我以后的工作奠定基础,作为本科时代一个完美的结束,我会尽力做好制动器的设计,完美完成这一项意义非凡的设计。二、设计的基本内容、拟解决的主要问题1、基本内容(1)基本参数:轴距2600mm;车轮滚动直径:615mm;轮距前/后:1480/1460;整备质量:1200kg;空载是前轴分配负荷 60%;空载是质心高度:600mm;最高车速:180km/h;最大爬坡度:21%(12度左右);最小转向直径:10.2m;最大功率/转速:78/6000 kw/rpm 最大转矩转速:134/4500 n*m/rpm ;轮胎型号:195/60R15(2)研究目的意义、技术现状、存在问题及发展趋势(3)总体结构设计(4)确定鼓式制动器的各个参数并进行校核(5)运用pro/e软件进行实体建摸(6)对鼓式制动器的摩擦衬片进行有限元分析(7)总结设计过程,完成设计说明书2、拟解决的主要问题(1)鼓式制动器的结构参数的确定(2)鼓式制动器关键部件的计算与校核(2)鼓式制动器的AutoCAD图纸的绘制(3)鼓式制动器的三维模型的建立(4)有限元对摩擦衬片的应力分析三、技术路线(研究方法)调研并查阅相关资料确定总体设计方案参数设计鼓式制动器的结构设计摩擦衬片的强度校核和分析轮缸、领蹄、制动鼓等三维建模运用ANSYS进行分析完成毕业设计和设计说明书四、论文进度安排(1)调研、查阅相关资料、完成开题报告 第12周(2月28日3月13日) (2)确定总体设计方案 第34周(3月14日3月27日) (3)对制动器参数进行设计第57周(3月28日4月17日) (4)绘制制动器的AutoCAD装配图、零件图及三维装配模型、零件模型 第89周(4月18 日5月1日) (5)Ansys软件对制动器摩擦衬片有限元分析第1012周(5月2日5月22日) (5)书写设计说明书第1314周(5月23日6月5日) (6)设计审核、修改 第1516周(6月6日6月19日) (7)毕业设计答辩准备及答辩 第17周(6月20日6月26日) 五、参考文献1 张健,雷雨成,卫修敬. 领从蹄式鼓式制动器制动力矩计算方法研究J. 长沙交通学院学报 , 2001,(03) . 2 中南林学院学报, Journal of Central South Forestry Universith, 编辑部邮箱 2000年 04期3 罗庆生,韩宝玲,李伟楷. 汽车鼓式制动器装配动画的计算机拟实制作J. 交通与计算机 , 2001,(02) .4 毛智东,王学林,胡于进,李成刚. 鼓式制动器接触分析J. 华中科技大学学报(自然科学版) , 2002,(07) .5 蒋崇贤,何明辉专用汽车设计 武汉工业大学出版社6 龚曙光.ANSYS在应力分析设计中的应用.CAD/CAM计算机辅助设计与制造.2001,(7):70-807 工程中的有限元方法(第3版)机械工业出版社,20048 孙桓主编.机械设计.机械工业出版社出版,20079 余志生汽车理论M,机械工业出版社,200710 陈家瑞主编.汽车构造.人民交通出版社出版,200511 吴镇著.理论力学.上海:上海交通大学出版社,200712 吕慧瑛.机械设计基础.北京:清华大学出版社,2002E. 13 龚洪. 影响制动器性能因数及设计方法探讨 J. 汽车科技, 2003.0514 吴迎学. 汽车鼓式制动器的模糊优化设计J. 中南林学院学报 , 2000,(04) 15 五十铃制动器总成 J. 机电新产品导报, 2004.(S1)16 宋建桐; 朱春红; 黎兰豪崎;自适应制动系统原理与功能浅析J. 轻型汽车技术 2010,(z4)17 AMikkolaUsing the Simulation Model for Identification of the Fatigue Parameters of Hydraulically Drive Log CraneJJournal of Mechanical Design,2001,123(5):12513118 AMikkola,HHandroos,ENiemiUsing Ansyssimulation for Predicting Dynamic Force Hi stories for the Fatigue Analysis of a Log CraneRFinland:Lappeenranta University of Technology,2003六、备注指导教师意见:签字: 年 月 日摘 要本论文是根据国内汽车市场的发展情况,以及随着汽车保有量的增加所带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全性的重要系统之一。因此,如何开发出高性能鼓式制动器来完善制动系统,为安全行驶提供保障是我要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。本设计说明书主要介绍了以比亚迪F3轿车为研究对象从而进行鼓式制动器的设计。首先介绍了鼓式制动器的发展及其结构,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定采用双向双领蹄式鼓式制动器。在计算出设计参数后,通过PRO/E三维制图软件建立模型,用ANSYS软件进行对摩擦片的校核分析。关键词:制动鼓;摩擦片;制动蹄;安全性;PRO/EABSTRACTThis paper is based on the development of the domestic automobile market, as well as with the increase of cars in the security issues brought about by more and more attention, and automotive braking system is an important active safety systems in the world. Therefore, how to develop high-performance drum brake to improve braking systems, provide protection for safe driving is my main problem to be solved. In addition, as the auto market competition, how to shorten the product development cycle and improve design efficiency and reduce costs, and increase market competitiveness, has become the key to success.The main specification of the design introduced in order to study BYD F3 car in order to carry out the design of drum brake. First introduced the development of brake drum and its structure, and through the drum brake and disc brake structure and analysis of advantages and disadvantages. Ultimately determine the use of lead from the hoof-style drum brakes. In the calculation of design parameters, through the PRO / E model of three-dimensional graphics software, using ANSYS software to check on the analysis of friction films.Key words: Brake drum; Friction plate; Brake shoe; Safety;PRO/EIISY-025-BY-5毕业设计(论文)中期检查表填表日期迄今已进行 8 周剩余 8 周学生姓名院系专业、班级指导教师姓名职称从事专业是否外聘是否题目名称基于有限元比亚迪F3制动器的设计指导教师填写毕业设计(论文)工作进度已完成主要内容待完成主要内容调研、资料收集,完成开题报告;确定鼓式制动器的设计方案和类型;计算出鼓式制动器的相关参数,确定鼓式制动器的相关尺寸;利用AutoCAD完成装配图的绘制;利用PRO/E软件对鼓式制动器的零件进行建模。完善装配图;利用AutoCAD进行零件图的绘制;完成Pro/E模型的装配;利用Ansys完成对主要部件的分析;完成设计说明书。存在问题及努力方向对鼓式制动器零件的三维建模仍存在很多问题,通过学习努力完成好三维建模。 学生签字:指导教师意 见指导教师签字: 年 月 日教研室意 见 教研室主任签字: 年 月 日目 录摘要Abstract第1章 绪论11.1设计的目的及意义.11.2 研究现状.1 1.3预期目标3 1.4 设计主要内容.4第2章 总体方案的确定52.1 制动器形式方案分析.52.2 鼓式制动器.5 2.3盘式制动器.8 2.4 制动器形式的确定.9 2.5 本章小结.9第3章 鼓式制动器的设计计算103.1 制动器系统主要参数数值10 3.1.1 相关主要技术参数.10 3.1.2 同步附着系数的分析.103.2制动器有关计算.11 3.2.1 地面对车轮的法向相反作用力.11 3.2.2 前后轴制动力的确定.11 3.2.3 制动器最大制动力矩的确定.133.3 鼓式制动器的结构设计与计算.14 3.3.1 制动鼓内径.14 3.3.2 制动鼓壁厚.15 3.3.3 摩擦衬片的宽度和包角.16 3.3.4 摩擦衬片的起始角.17 3.3.5 摩擦衬片的摩擦系数.173.4 鼓式制动器主要零件的结构设计17 3.4.1制动鼓摩擦衬片的摩擦系数.17 3.4.2制动蹄.17 3.4.3 制动底板.18 3.4.4 后轮制动轮缸直径与工作容积的设计.183.5 制动性能分析.19 3.5.1 制动性能评价指标.19 3.5.2 制动效能.19 3.5.3 制动效能恒定性.19 3.5.4 制动时汽车的方向稳定性.19 3.5.5 制动器制动力分配曲线分析.20 3.5.6 制动减速度.21 3.5.7 制动距离.21 3.5.8 摩擦衬片的磨损特性计算. .21 3.5.9 驻车制动计算.233.6 本章小结.24第4章 鼓式制动器的三维建模254.1 制动蹄的建模.254.2 摩擦片的建模.274.3 拉力弹簧建模.284.4 制动轮缸的建模.294.5 制动底板的建模.294.6 制动鼓建模.304.7 制动轮缸放气螺栓建模.314.8 制动轮缸油管接头的建模.324.9 鼓式制动器的装配及分解.334.10干涉检查.354.11本章小结35第 5章 有限元分析365.1摩擦片的有限元分析.36 5.1.1 Ansys与Pro/E连接的建立.36 5.1.2 Pro/E导出IGES(*.Igs).37 5.1.3将摩擦片Pro/E模型导入Ansys.37 5.1.4将摩擦片进行网格划分.38 5.1.5对摩擦片加载求解.495.2制动鼓的有限元分析40 5.2.1将制动鼓进行网格划分.40 5.2.2对制动鼓加载求解.415.3本章小结.42结论43参考文献 44致谢45附录.46 第1章 绪 论1.1设计的目的及意义汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动器1。通过查阅相关的资料,运用专业基础理论和专业知识,确定以比亚迪F3轿车的制动系统为基本的为其设计鼓式制动器的设计方案,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上尽量采用对人体无害的材料。1.2研究现状虽然在汽车制动器领域,盘式制动器将逐步取代鼓式制动器是必然的趋势,但在现阶段,鼓式制动器依然占据着很重要的位置。相对盘式制动器结构复杂,对制动钳、管路系统要求高,造价高等缺点,鼓式制动器不仅结构较简单、成本低,而且符合传统设计,所以在轻、重型载货汽车上,鼓式制动器还是在大量使用的。 鼓式相对盘式,其制动效能和散热性要差许多。鼓式制动器的制动力稳定性差,在不同路面上,制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量,制动蹄和制动鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙。针对以上缺点,现在鼓式制动器则采取一些改进措施: 1)合理确定制动鼓的直径 2)合理确定摩擦衬片宽度 3)合理确定轮毂散热结构 4)合理选择轮胎和轮辋5)加装气门嘴固定卡6)采用目前较先进的技术,以防车轮过热,如采用制动间隙自动调整臂、使用缓速器。设计中采用的是领从蹄式制动器,兼顾了制动器效能因数和制动器效能的稳定性。它的工作原理是利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势,亦即由制动踏板的踏板力通过推杆和主缸活塞,使主缸油液在一定压力下流入轮缸,并通过两轮缸活塞推使制动蹄绕支承销转动,上端向两边分开而以其摩擦片压紧在制动鼓的内圆面上。不转的制动蹄对旋转制动鼓产生摩擦力矩,从而产生制动力,使车轮减速直至停车。鼓式制动器是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。汽车制动性能是确保车辆行驶的主、被动安全性和提升车辆行驶的动力性决定因素之一。鼓式制动器是应用非常广泛的一种制动器,有其优良的制动效果及简单的结构形式2。应用Pro/E 软件建立鼓式制动器主要零件的实体模型, 并完成虚拟装配,然后利用Ansys软件对制动器摩擦衬片有限元分析,为鼓式制动器的设计与研究提供了一种方法,,可缩短鼓式制动器的研发周期, 降低产品的研发成本, 并为以后进一步的结构优化设计、制造及运动分析奠定了基础。目前使用计算机辅助设计已经成为如今研究现状,也必将成为以后的发展趋势,计算机辅助设计的使用可降低工程设计成本的13%30%,减少产品设计到投产的时间30%60%,增加分析问题的深度和广度335倍,提高作业生产率40%70%,提高设备利用率23倍,减少加工过程30%60%,降低人工成本5%20%。以PTC公司的Pro/Engineer为代表的基于特征的参数化设计系统的问市给机械设计自动化奠定了坚实的现实基础,使得它变得其实可行。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。我国在九五计划期间大力推广CAD技术,机械行业大中型企业CAD的普及率从八五末的20%提高到目前的70%。随着企业CAD应用的普及,工程技术人员已逐步甩掉图板,而将主要精力投身如何优化设计,提高工程和产品质量,计算机辅助工程分析(CAE,Computer Aided Engineering)方法和软件将成为关键的技术要素。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面:增加设计功能,减少设计成本;缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。汽车的任何零部件都可以根据其所要求的性能对其进行有限元分析,寻找最优的设计方案, 以做到既能降低生产成本, 又能提高其性能, 达到最优的结合。例如,美国的ANSYS 公司已经利用有限元分析软件ANSYS 进行了钢板弹簧精确设计; 上海汇众汽车制造有限公司利用有限元分析软件ANSYS 进行油门踏板杆材料的断裂优化分析以解决国产化材料的替代等等。汽车工业代表着一个国家制造业发展的水平,世界经济大国的经济发展无一不与汽车工业有着极为密切的关系;作为世界经济大国的美国的汽车就一直处于汽车行业领头地位。作为制造业的中坚,汽车工业一直是以有限元为主的CAE技术应用的先锋。既然汽车的发展与有限元技术的应用有如此密切的联系,故必须要加大对此项技术的投入;不但要加大资金的投入,而且一定要加大人力资源的投入,培养一批熟练掌握并能更进一步开发此项技术的人才。车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动器的性能是车辆非常重要的性能之一,改善汽车的制动器的性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价:(1)制动效能:即制动距离与制动减速度;(2)制动效能的恒定性:即抗热衰退性;(3)制动时汽车的方向稳定性;目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系和制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价2。1.3预期目标(1)具有良好的制动效能(2)具有良好的制动效能的稳定性(3)制动时汽车操纵稳定性好(4)制动效能的热稳定性好1.4设计主要内容确定鼓式制动器的基本参数,对制动器的制动鼓、蹄片和支撑的几何尺寸进行计算及强度校和,利用Pro/E软件建立制动器三维模型装配图,通过干涉检查验证制动器设计的正确性,利用Ansys软件对摩擦衬片有限元分析。制定出鼓式制动器的结构方案,确定计算制动器的主要参数。利用计算机辅助设计绘制装配图和零件图。对设计出的鼓式制动器的各项指标进行评价分析。第2章 总体方案的确定2.1制动器形式方案分析汽车制动器几乎均为机械摩擦式,即利用旋转元件与固定元件两工作表面间的摩擦产生的制动力矩使汽车减速或停车。一般摩擦式制动器按其旋转元件的形状分为鼓式和盘式两大类。2.2鼓式制动器鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器两种结构型式。内张型鼓式制动器的摩擦元件是一对带有圆弧形摩擦蹄片的制动蹄,后者则安装在制动底板上,而制动底板则紧固在前桥的前梁或后桥桥壳半袖套管的凸缘上,其旋转的摩擦元件为制动鼓。车轮制动器的制动鼓均固定在轮鼓上。制动时,利用制动鼓的圆柱内表面与制动蹄摩擦路片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带,其旋转摩擦元件为制动鼓,并利用制动鼓的外因柱表面与制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作一些汽车的中央制动器,但现代汽车已很少采用。所以内张型鼓式制动器通常简称为鼓式制动器,通常所说的鼓式制动器就是指这种内张型鼓式结构。鼓式制动器按蹄的类型分为: 1、领从蹄式制动器如图2.1所示,若图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向变为反向旋转,则相应地使领蹄与从蹄也就相互对调了。这种当制动鼓正、反方向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小3。 图2.1 领从蹄式制动器 领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进与倒车时的制动性能不变,且结构简单,造价较低,也便于附装驻车制动机构,故这种结构仍广泛用于中、重型载货汽车的前、后轮制动器及轿车的后轮制动器。 2、双领蹄式制动器若在汽车前进时两制动蹄均为领蹄的制动器,则称为双领蹄式制动器。显然,当汽车倒车时这种制动器的两制动蹄又都变为从蹄故它又可称为单向双领蹄式制动器。如图2.2所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等机件在制动底板上是以制动底板中心作对称布置的,因此,两蹄对制动鼓作用的合力恰好相互平衡,故属于平衡式制动器4。双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降。这种结构常用于中级轿车的前轮制动器,这是因为这类汽车前进制动时,前轴的动轴荷及 附着力大于后轴,而倒车时则相反。 图2.2 双领蹄式制动器 3、双向双领蹄式制动器当制动鼓正向和反向旋转时,两制动助均为领蹄的制动器则称为双向双领蹄式制动器。它也属于平衡式制动器。由于双向双领蹄式制动器在汽车前进及倒车时的制动性能不变,因此广泛用于中、轻型载货汽车和部分轿车的前、后车轮,但用作后轮制动器时,则需另设中央制动器用于驻车制动。如图2.3所示。 图2.3 双向双领蹄式器 4、单向增力式制动器单向增力式制动器如图所示两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。由于制动时两蹄的法向反力 不能相互平衡,因此它居于一种非平衡式制动器。单向增力式制动器在汽车前进制动时的制动效能很高,且高于前述的各种制动器,但在倒车制动时,其制动效能却是最低的。因此,它仅用于少数轻、中型货车和轿车上作为前轮制动器。如图2.4所示。 图2.4 单向增力式制动器 5、双向增力式制动器将单向增力式制动器的单活塞式制动轮缸换用双活塞式制动轮缸,其上端的支承销也作为两蹄共用的,则成为双向增力式制动器。对双向增力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为增力式制动器。双向增力式制动器在大型高速轿车上用的较多,而且常常将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压经制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过钢索拉绳及杠杆等机械操纵系统进行操纵。双向增力式制动器也广泛用作汽车的中央制动器,因为驻车制动要求制动器正向、反向的制动效能都很高,而且驻车制动若不用于应急制动时也不会产生高温,故其热衰退问题并不突出5。但由于结构问题使它在制动过程中散热和排水性能差,容易导致制动效率下降。因此,在轿车领域上己经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济型车中使用,主要用于制动负荷比较小的后轮和驻车制动。如图2.5所示。 图2.5 双向增力式制动器2.3盘式制动器盘式制动器按摩擦副中定位原件的结构不同可分为钳盘式和全盘式两大类。(1)钳盘式钳盘式制动器按制动钳的结构型式又可分为定钳盘式制动器、浮钳盘式制动器等。定钳盘式制动器:这种制动器中的制动钳固定不动,制动盘与车轮相联并在制动钳体开口槽中旋转。具有下列优点:除活塞和制动块外无其他滑动件,易于保证制动钳的刚度;结构及制造工艺与一般鼓式制动器相差不多,容易实现从鼓式制动器到盘式制动器的改革;能很好地适应多回路制动系的要求。浮动盘式制动器:这种制动器具有以下优点:仅在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管加之液压缸冷却条件好,所以制动液汽化的可能性小;成本低;浮动钳的制动块可兼用于驻车制动。(2)全盘式在全盘式制动器中,摩擦副的旋转元件及固定元件均为圆形盘,制动时各盘摩擦表面全部接触,其作用原理与摩擦式离合器相同。由于这种制动器散热条件较差,其应用远没有浮钳盘式制动器广泛。通过对盘式、鼓式制动器的分析比较可以得出盘式制动器与鼓式制动器比较有如下均一些突出优点: 制动稳定性好.它的效能因素与摩擦系数关系的K-p曲线变化平衡,所以对摩擦系数的要求可以放宽,因而对制动时摩擦面间为温度、水的影响敏感度就低。所以在汽车高速行驶时均能保证制动的稳定性和可靠性6。 盘式制动器制动时,汽车减速度与制动管路压力是线性关系,而鼓式制动器却是非线性关系。 输出力矩平衡.而鼓式则平衡性差。 制动盘的通风冷却较好,带通风孔的制动盘的散热效果尤佳,故热稳定性好,制动时所需踏板力也较小。 车速对踏板力的影响较小。2.4制动器形式的确定因为比亚迪F3轿车属于家庭用经济型小型轿车,所以基于汽车的生产成本应符合适用人群的原则,再综合以上优缺点最终确定比亚迪F3轿车的制动器设计采用前盘后鼓式。而我所设计的后轮鼓式制动器采用的是双向双领蹄式。2.5本章小结 本章对此次设计的总体方案进行分析,对比了目前各种制动器形式的利弊,为确定本设计的设计方案提供了依据,作为设计的开始本章显得十分的重要,确定了制动器的形式为以后的设计奠定了基础。第3章 鼓式制动器的设计计算3.1制动系统主要参数数值3.1.1相关主要技术参数 设计鼓式制动器的参数数据是采用比亚迪F3轿车的具体参数如下: 整车质量: 空载:1200kg 满载:1600kg质心位置: a=1.04m b=1.56m 质心高度: 空载:hg=0.60m 满载:hg=0.55m轴 距: L=2.6m轮 距: L=1.48m最高车速: 180km/h最大功率/转速:78/6000 kw/rpm最大转矩/转速:134/4500 Nm/rpm轮 胎: 195/60R153.1.2同步附着系数的分析(1)当时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;(2)当时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性;(3)当时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。分析表明,汽车在同步附着系数为的路面上制动(前、后车轮同时抱死)时,其制动减速度为,即,为制动强度。而在其他附着系数的路面上制动时,达到前轮或后轮即将抱死的制动强度这表明只有在的路面上,地面的附着条件才可以得到充分利用。根据相关资料查出轿车0.6,故取=0.7。3.2制动器有关计算3.2.1地面对车轮的法向反作用力地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称为地面制动力,其方向与汽车行驶方向相反,N;车轮有效半径,m。 令 (3.1)并称之为制动器制动力,它是在轮胎周缘克服制动器摩擦力矩所需的力,因此又称为制动周缘力。与地面制动力的方向相反,当车轮角速度0时,大小亦相等,且仅由制动器结构参数所决定。即取决于制动器的结构型式、尺寸、摩擦副的摩擦系数及车轮有效半径等,并与制动踏板力即制动系的液压或气压成正比。当加大踏板力以加大,和均随之增大。但地面制动力受着附着条件的限制,其值不可能大于附着力,即 (3.2)或 (3.3)式中: 轮胎与地面间的附着系数; Z地面对车轮的法向反力。当制动器制动力和地面制动力达到附着力值时,车轮即被抱死并在地面上滑移。此后制动力矩即表现为静摩擦力矩,而即成为与相平衡以阻止车轮再旋转的周缘力的极限值。当制动到=0以后,地面制动力达到附着力值后就不再增大,而制动器制动力由于踏板力的增大使摩擦力矩增大而继续上升(见图3.1)。 图3.1 制动力与踏板力的关系根据汽车制动时的整车受力分析,考虑到制动时的轴荷转移,可求得地面对前、后轴车轮的法向反力Z1,Z2为:(1560+x6.86)8955N (3.4)(1040x6.86)2805N (3.5) 式中: G汽车所受重力; L汽车轴距;汽车质心离前轴距离;汽车质心离后轴距离; 汽车质心高度; g 重力加速度; -汽车制动减速度。3.2.2前后轴制动力的确定汽车总的地面制动力为 (3.6) 式中: 制动强度,亦称比减速度或比制动力;,前后轴车轮的地面制动力。由以上两式可求得前、后轴车轮附着力为 (3.7) (3.8) 上式表明:汽车在附着系数为任意确定值的路面上制动时,各轴附着力即极限制动力并非为常数,而是制动强度q或总制动力的函数。当汽车各车轮制动器的制动力足够时,根据汽车前、后轴的轴荷分配,前、后车轮制动器制动力的分配、道路附着系数和坡度情况等,制动过程可能出现的情况有三种,即(1)前轮先抱死拖滑,然后后轮再抱死拖滑;(2)后轮先抱死拖滑,然后前轮再抱死拖滑;(3)前、后轮同时抱死拖滑。在以上三种情况中,显然是最后一种情况的附着条件利用得最好。由式(3.9)、式(3.10)不难求得在任何附着系数的路面上,前、后车轮同时抱死即前、后轴车轮附着力同时被充分利用的条件是= (3.9) (3.10) 式中: 前轴车轮的制动器制动力,;后轴车轮的制动器制动力,;前轴车轮的地面制动力;后轴车轮的地面制动力;,地面对前、后轴车轮的法向反力;G 汽车重力;,汽车质心离前、后轴距离;汽车质心高度。选取j=0.7,则:= (3.11) =x=8232N /=4.2 (3.12)由式(3.11)、式(3.12)得:=6256.32N,=1975.68N3.2.3制动器最大制动力矩的确定制动器所能产生的制动力矩,受车轮的计算力矩所制约,即: =6256.320.3075=1923.8Nm (3.13)=1975.680.3075=607.5 Nm (3.14)式中:前轴制动器的制动力,;后轴制动器的制动力,;一个车轮制动器应有的最大制动力矩为按上列公式计算结果的半值。则后轮制动器应有的最大力矩为 303.75Nm3.3鼓式制动器的结构设计与计算3.3.1 制动鼓内径输入力一定时,制动鼓内径越大,制动力矩越大,且散热能力也越强。 图3.2双领蹄式鼓式制动器但增大D受轮辋内径限制,如图3.2所示。制动鼓与轮辋之间应保持足够的间隙,通常要求该间隙不小于20mm否则不仅制动鼓散热条件太差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制动鼓直径与轮辋直径之比的范围如下:乘用车: DDr=0.640.78货车: DDr=0 .740 .83制动鼓内径尺寸应参照专业标准ZB T24 D0589制动鼓工作直径及制动蹄片宽度尺寸系列选取。 依据汽车后轮轮胎型号:195/60R15 于是,得轮辋直径Dr: Dr =25.4 x 15=381 mm (1 in=25.4mm)取 DDr=0.78则制动鼓内径直径:D=0.78 x Dr=0.78x381=297.18mm参照中华人民共和国专业标准 QC/T 3091999 制动鼓工作直径及制动蹄片宽度尺寸系列,轮辋直径15英寸的制动鼓最大内径不超过300mm。取 D=300mm。3.3.2 制动鼓壁厚制动鼓壁厚的选取主要是从其刚度和强度方面考虑。壁厚取大些也有利于增大其散热容量,但试验表明,壁厚由11mm增至20mm时,摩擦表面的平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车制动鼓壁厚取为712mm。货车取为1318mm。本设计取制动鼓厚度为 n=10mm。制动鼓有铸造的和组合式两种。铸造制动鼓多选用灰铸铁,具有机械加工容易、耐磨、热容量大等优点。为防止制动鼓工作时受载变形,常在制动鼓的外圆周部分铸有肋,用来加强刚度和增加散热效果。精确计算制动鼓壁厚既复杂又困难,所以常根据经验选取。3.3.3 摩擦衬片的宽度和包角摩擦衬片宽度尺寸b的选取对摩擦衬片的使用寿命有影响。衬片宽度尺寸取窄些,则磨损速度快,衬片寿命短;若衬片宽度尺寸取宽些,则质量大,不易加工,并且增加了成本。制动鼓半径R确定后,衬片的摩擦面积为Ap=Rb (3.15)式中: 以弧度(rad)为单位。制动器各蹄衬片总的摩擦面积Ap越大,制动时所受单位面积的正压力和能量负荷越小,从而磨损特性越好。试验表明,摩擦衬片包角=90100时,磨损最小,制动鼓温度最低,且制动效能最高。角减小虽然有利于散热,但单位压力过高将加速磨损。实际上包角两端处单位压力最小,因此过分延伸衬片的两端以加大包角,对减小单位压力的作用不大,而且将使制动不平顺,容易使制动器发生自锁。因此,包角一般不宜大于120。取: =108。衬片宽度b较大可以减少磨损,但过大将不易保证与制动鼓全面接触。制动器各蹄摩擦衬片总摩擦面积越大,则制动时产生的单位面积越小,从而磨损也越小。根据中华人民共和国专业标准 QC/T 3091999 制动鼓工作直径及制动蹄片宽度尺寸系列,对于(0.91.5)t的轿车,单个制动器总的摩擦面积Ap为(100200)cm2,见表3.1。这里取:Ap=150cm2.,b=64mm。 表3-1 衬片摩擦面积汽车类别汽车总质量m/t单个制动器的衬片摩擦面积 /cm轿车2.5100200200300客车与货车1.07.07.012.012.017.0120200150250250400300650550100060015003.3.4 摩擦衬片的起始角一般将衬片布置在制动碲的中央,即令=90。有时为了适应单位压力的分布情况,将衬片相对于最大压力点对称布置,以改善磨损均匀性和制动效能。此设计中 令=90=90=363.3.5 摩擦衬片的摩擦系数摩擦片摩擦系数对制动力矩的影响很大,选择摩擦片时不仅希望其摩擦系数要高些,更要求其热稳定性要好,受温度和压力的影响要小。不能单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求,后者对蹄式制动器是非常重要的。各种制动器用摩擦材料的摩擦系数的稳定值约为0.30.5,少数可达0.7。一般说来,摩擦系数愈高的材料,其耐磨性愈差。所以在制动器设计时并非一定要追求高摩擦系数的材料。当前国产的制动摩擦片材料在温度低于250时,保持摩擦系数已无大问题。本设计取=0.3。3.4鼓式制动器主要零件的结构设计3.4.1 制动鼓摩擦衬片的摩擦系数制动鼓应具有非常好的刚性和大的热容量,制动时其温升不应超过极限值。制动鼓的材料应与摩擦衬片的材料向匹配,以保证具有高的摩擦系数并使工作表面摩擦均匀。中型,重型载货汽车和中型、大型客车多采用灰铸铁HT200或合金铸铁制造的制动鼓;轻型货车和一些轿车则采用钢板冲压成形的辐板与铸铁鼓筒部分铸成一体的组合制动鼓;带有灰铸铁内鼓筒的铸铝合金制动鼓在轿车上得到了日益广泛的应用;铸铁内鼓筒与铝合金也是铸到一起的,这中内镶一层珠光体组织的灰铸铁作为工作表面,其耐磨性和散热性都很好,而且减少了质量。本设计采用的制动鼓材料:铸铁内鼓筒与铝合金铸到一起3.4.2 制动蹄轿车和微型,轻型载货汽车的制动蹄管饭采用T形型钢碾压或钢板冲压-焊接制成;大吨位载货汽车的制动蹄则多采用铸铁、铸钢或铸铝合金制成。制动蹄的结构尺寸和断面形状应保证其刚度好,单小型车用钢板制的制动蹄腹板上有时开有一、两条径向槽,使蹄的弯曲刚度小些,以便使制动蹄摩擦衬片与制动鼓之间的接触压力均匀,因而使衬片的磨损较为均匀,并可减少制动时的尖叫声。制动蹄腹板和翼缘的厚度,轿车的约为3mm5mm;货车的约为5mm8mm。摩擦片的厚度,轿车的多为4.5mm5mm。本设计制动蹄选用:T形HT200制动蹄腹板厚度:5mm制动蹄翼缘厚度:5mm摩擦衬片厚度:5mm3.4.3 制动底板制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制动底板承受着制动器工作时的制动反力矩,因此它应该有足够的刚度。刚度不足会使制动力矩减小,踏板行程增大,衬片磨损也不均匀。本设计底板的材料:HT2003.4.4 后轮制动轮缸直径与工作容积的设计计算 (3.16)式中:p考虑到制动力调节装置作用下的轮缸或灌录液压,p=8Mp12Mp。 取:p=10Mp经查比亚迪F3轿车使用与维护手册得: P=7065N所以: =30mm 根据GB7524-87标准规定的尺寸中选取,因此轮缸直径为30mm5。 一个轮缸的工作容积 根据公式 (3.17) 式中:一个轮缸活塞的直径; n轮缸活塞的数目; 一个轮缸完全制动时的行程: 初步设计时可取2mm-2.5mm =2mm 式中:消除制动蹄与制动鼓间的间隙所需的轮缸活塞行程。 由于摩擦衬片变形而引起的轮缸活塞。 ,分别为鼓式制动器变形与制动鼓变形而引起的轮缸活塞行程。 得一个轮缸的工作容积: =2826mm 3.5制动性能分析3.5.1 制动性能评价指标汽车制动性能主要由以下三个方面来评价:(1)制动效能,即制动距离和制动减速度;(2)制动效能的稳定性,即抗衰退性能;(3)制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑、以及失去转向能力的性能6。3.5.2 制动效能制动效能是指在良好路面上,汽车以一定初速度制动到停车的制动距离或制动时汽车的减速度。制动效能是制动性能中最基本的评价指标。制动距离越小,制动减速度越大,汽车的制动效能就越好9。3.5.3 制动效能的恒定性制动效能的恒定性主要指的是抗热衰性能。汽车在高速行驶或下长坡连续制动时制动效能保持的程度。因为制动过程实际上是把汽车行驶的动能通过制动器吸收转换为热能,所以制动器温度升高后能否保持在冷态时的制动效能,已成为设计制动器时要考虑的一个重要问题。3.5.4 制动时汽车的方向稳定性制动时汽车的方向稳定性,常用制动时汽车给定路径行驶的能力来评价。若制动时发生跑偏、侧滑或失去转向能力。则汽车将偏离原来的路径。制动过程中汽车维持直线行驶,或按预定弯道行驶的能力称为方向稳定性。影响方向稳定性的包括制动跑偏、后轴侧滑或前轮失去转向能力三种情况6。制动时发生跑偏、侧滑或失去转向能力时,汽车将偏离给定的行驶路径。因此,常用制动时汽车按给定路径行驶的能力来评价汽车制动时的方向稳定性,对制动距离和制动减速度两指标测试时都要求了其试验通道的宽度。方向稳定性是从制动跑偏、侧滑以及失去转向能力等方面考验。制动跑偏的原因有两个: (1)汽车左右车轮,特别是转向轴左右车轮制动器制动力不相等。 (2)制动时悬架导向杆系与转向系拉杆在运动学上的不协调(互相干涉)。前者是由于制动调整误差造成的,是非系统的。而后者是属于系统性误差。侧滑是指汽车制动时某一轴的车轮或两轴的车轮发生横向滑动的现象。最危险的情况是在高速制动时后轴发生侧滑。防止后轴发生侧滑应使前后轴同时抱死或前轴先抱死后轴始终不抱死7。理论上分析如下,真正的评价是靠实验的。3.5.5 制动器制动力分配曲线分析对于一般汽车而言,根据其前、后轴制动器制动力的分配、载荷情况及路面附着系数和坡度等因素,当制动器制动力足够时,制动过程可能出现如下三种情况:(1)前轮先抱死拖滑,然后后轮抱死拖滑。(2)后轮先抱死拖滑,然后前轮抱死拖滑。(3)前、后轮同时抱死拖滑。 所以,前、后制动器制动力分配将影响汽车制动时的方向稳定性和附着条件利用程度,是设计汽车制动系必须妥善处理的问题。根据所给参数及制动力分配系数,绘制出制动力分配曲线如图3.3:当I线与线相交时,前、后轮同时抱死。当I线在线下方时,前轮先抱死。当I线在线上方时,后轮先抱死 1 21 2I线I线(满载)I线(满载)I线(空载)j=0.7B 0Fb1/KNFB2/KN图3.3轿车的I曲线和线3.5.6 制动减速度制动系的作用效果,可以用最大制动减速度及最小制动距离来评价。假设汽车是在水平的,坚硬的道路上行驶,并且不考虑路面附着条件,因此制动力是由制动器产生。此时=式中:汽车前、后轮制动力矩的总合。= M+ M=785+1600=2385Nm (3.18)r滚动半径 r=370mmGa汽车总重 Ga=1200kg代入数据得=(785+1600)/0.3771200=6.16m/s轿车制动减速度应在5.87m/s,所以符合要求。3.5.7 制动距离在匀减速度制动时,制动距离S为 S=1/3.6(t+ t/2)Va+ Va/254 (3.19) 式中:t消除蹄与制动鼓间隙时间,取0.1s t制动力增长过程所需时间取0.2s 故S=1/3.6(0.1+ 0.2/2)30+ 30/2540.7=7.2m 轿车的最大制动距离为:S=0.1V+V/150 V取30km/小时:S=0.1+30/150=9mSS 所以符合要求。3.5.8 摩擦衬片的磨损特性计算摩擦衬片的磨损与摩擦副的材质,表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素12。汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重7。1、比能量耗散率 双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别 (3.20) (3.21)式中:汽车回转质量换算系数,紧急制动时,; 汽车总质量; ,汽车制动初速度与终速度,m/s;计算时轿车取27.8m/s; 制动时间,;按下式计算: t=27.8/6=4.6s 制动减速度, 0.6106m/s; ,前、后制动器衬片的摩擦面积;=7600mm,质量在1.52.5/t的轿车摩擦衬片面积在200-300cm,故取=30000mm 制动力分配系数。则 =5.7轿车盘式制动器的比能量耗散率应不大于6.0,故符合要求。=0.7轿车鼓式制动器的比能量耗散率应不大于1.8,故符合要求。2、比滑磨功 磨损和热的性能指标可用衬片在制动过程中由最高制动初速度至停车所完成的单位衬片面积的滑磨功,即比滑磨功来衡量: (3.22)式中:汽车总质量 车轮制动器各制动衬片的总摩擦面积,=752cm; 汽车最高车速 许用比滑磨功,轿车取1000J/1500J/。 L=1497J/1000J/1500J/故符合要求。3.5.9 驻车制动计算(1)汽车可能停驻的极限上坡路倾斜角 (3.23) = =25式中:车轮与轮面摩擦系数,取0.7; 汽车质心至前轴间距离; 轴距; 汽车质心高度。最大停驻坡高度应不小于16%20%,故符合要求。(2)汽车可能停驻的极限下坡路倾斜角 (3.24) = =16最大停驻坡高度应不小于16%20%,故符合要求。3.6.本章小结本章的主要内容是完成了整车参数的计算,主要有附着系数、前后轴的制动力矩等。完成这部分的计算就可以知道所设计的制动器的制动力矩从而确定制动器的参数;完成了鼓式制动器的基本参数设计,还确定了鼓式制动器的主要零部件的结构设计,主要有摩擦衬片的宽度、包角、起始角等;完成了鼓式制动器的基本参数设计,还确定了鼓式制动器的主要零部件的结构设计,因为此次设计的鼓式制动器的驱动力是液压驱动,所以在本章的最后确定并设计了轮缸的工作直径和工作容积。通过对制动减速度,制动距离和摩擦片的磨损特性以及驻车制动时的角度进行了分析和计算。所得到的数值都满足于制动器制动时的需要。第4章 鼓式制动器的三维建模 Pro/ENGINEER Wildfire 是一套由设计至生产地机械自动化软件,是一个参数化、基于特征的实体造型系统,并且具有单一数据库功能。Pro/ENGINEER Wildfire 简单易用,功能强大、互联互通,进一步加强了产品的实用性,增加了许多实用的新功能,提高了整个产品开发体系中的个人效率和过程效率,能够节省时间和成本,并提高产品质量。目前,Pro/ENGINEER Wildfire 广泛应用于机械、汽车、电器、磨具等领域10。本章就是以Pro/ENGINEER Wildfire 软件进行关于对鼓式制动器模型的三维建模。4.1制动蹄的建模打开PRO/E工具软件,新建一个“零件”,命名“zhidongti”,利用“拉伸工具”。选择FRONT面作为基准平面,进入草绘模式,绘制出制动蹄翼板的侧面图形。退出草绘模式,根据设计结果选择拉伸宽度为“64mm”。得到图4.1:图4.1 制动蹄主体拔模在以上基础上,建立两个与制动蹄翼板相切的基准面,得到图4.2:图4.2 制动蹄曲面上基准面的建立 利用拉伸工具在所创建基准面DTM1上,进行拉伸圆柱销,得到下图,图4.3:图4.3 制动蹄曲面基准面上的拔模制动蹄腹板和翼缘的厚度为:轿车35mm;所以翼缘的拉伸厚度为5mm。退出草绘模式后,拉伸厚度为5mm。然后利用“打孔工具”在翼缘上适当位置打孔。在得到一个制动蹄模型后,选取整个模型,利用“镜像”工具,以FRONG面为基准进行镜像,得到完整制动蹄,见图4.4。图4.4 制动蹄完整结构4.2摩擦片的建模利用“拉伸”工具就可以完成建模,在草绘阶段绘制圆弧时保证弧度形成为108度的包角;摩擦片的厚度为5mm。拉伸厚度为64mm。单击“完成”得到单片摩擦片,并要在此摩擦片上进行“打孔”操作,再选取这个模型利用“镜像”工具得到完整摩擦片。如图4.5所示:图4.5 摩擦衬片4.3拉力弹簧建模 新建立一个“零件”,命名为“lalitanhuan”。单击“插入”“螺旋扫描”“伸出项” ;然后确定草绘平面,操作步骤如下图4.6所示:图4.6 操作截图 弹簧的高度是22.5mm;在生成弹簧的过程中,确定其弹簧的“节距值:4.5” ;确定后进入第二次草绘平面进行弹簧粗细大小的确定。最后单击“完成”得到压紧弹簧模型。如图4.7所示。图4.7 拉力弹簧4.4制动轮缸的建模 制动轮缸的建模,主要运用“拉伸”、“旋转”、“打孔”、“拔模”等建模命令。制动轮缸的直径由第二章计算得出D=30mm;又知道制动轮缸的容积为2826mm。所以取制动轮缸的长度为95mm,制动轮缸的底座尺寸以匹配制动底板的尺寸的标准。最后可以得到制动轮缸的模型图如图4.8。图4.8 制动轮缸4.5制动底板的建模制动底板是制动蹄、后制动轮缸、止动杆、压杆以及支撑销,加紧销等零件的装配承载底板,并要与制动鼓结合在一起。所以他的建模必须考虑到其它零件的尺寸大小,特别是固定制动蹄的部分,与放置制动轮缸的平面。运用PRO/E软件进行制动底板的建模要综合运用了多个知识点。设计过程如下图4.9,图4.10所示。图4.9 制动底板主体拔模图4.10 制动底板4.6制动鼓的建模 制动鼓的建模,主要运用的是“旋转”命令。输入计算的尺寸,进行360度旋转;再用“打孔”工具进行轴孔和螺栓孔的建立。设计过程如下图4.11, 图4.12所示 。图4.11 制动鼓主体结构图4.12 制动鼓4.7制动轮缸放气螺栓的建模制动轮缸放气螺栓的建模,主要运用的是“旋转”命令。输入计算的尺寸,进行360度旋转设计结果如下图4.13所示图4.13放气螺栓4.8制动轮缸油管接头的建模制动轮缸放气螺栓的建模,主要运用的是“旋转”命令。输入计算的尺寸,进行360度旋转设计结果如下图4.14所示图4.14油管接头4.9鼓式制动器的装配及分解在Pro/E装配模式下,可以将元件组合成装配件,然后可以对装配件进行修改、分析或重新定向。装配的基本步骤是:新建组件文件;添加装配元件;约束装配元件,在这步骤中会用到“匹配”、“对齐”、“重合”、“定向”等相关命令,在“移动”中会多次用到“平移”和“旋转” ;最后可以编辑装配元件。装配时点击“将原件添加到组件”,可将以储存在文件中的各个Pro/E模型添加到新建文件中。在装配中用到的命令第一个添加的组件是后轮轴,然后依次将制动底板、后制动轮缸、制动蹄、摩擦片、制动板、压缩弹簧、制动杆、楔形块、制动鼓等组件依次装配好。装配过程如下图4.15、图4.16.图4.17、图4.18、图4.19所示。图4.15 制动器装配图一图4.16制动器装配图二图4.17制动器装配图三图4.18制动器装配图四图4.19制动器分解图4.10 干涉检查 对Pro/E装配图进行干涉检查后,得出结论没有干涉现象,所以设计的可行性得到了保证。4.11本章小结 本章的主要内容是利用PRO/E软件进行鼓式制动器的三维实体建模,并完成装配图和爆炸图。这就将本次设计的实体模型建立出来。在建立模型过程中,运用了“拉伸”、“旋转”、“打孔”、“镜像”、“扫描”等多个命令形式。第5章 有限元分析Ansys是一款大型通用有限元分析软件,融金融、流体、电场、声场分析于一体,广泛应用于机械制造、石油化工、轻工、造船、汽车交通、土木工程、水利等领域,得到研究人员和设计人员的青睐17。这里将用其对摩擦衬片进行静态分析。5.1摩擦片的有限元分析5.1.1 Ansys与Pro/E连接的建立ANSYS在默认的情况下是不能直接对Pro /E中的pat(或asm)文件进行直接转换的,必须通过以下对ANSYS设置连接过程进行激活模块:鼠标点击“开始程序ANSYS8.0UtilitiesANS_ADM IN”,出现如图1的对话框,选择configuration optionsOK,接下来的对话框顺序选取。Configuration Connection for Pro/EOK,ANSYSMultiphysics & WIN 32OK,图5.1 接口的建立完成后ANSYS提示已在自己的安装目录中成功生成config anscon文件,如图2所示,记下config anscon的路径。在接下来出现的对话框中“Pro/Engireer Installation path”选项后输入Pro/E的起始安装路径如“C: Program Files proeWildfire3.0 ”:“Language used with Pro /Engineer”选项用默认的usascii,点击OK。出现对话框提示在Pro /E目录下建立了一个protk.dat文件,图5.2生成config anscon点击确定完成配置,运行Pro /E,工具菜单后面出现了ANSYS8.0,说明连接成功了。运行Pro/E打开某零件三维模型图,点击ANSYS8.0下的ANSYSGeom按钮,则模型自动导入到ANSYS中,此时ANSYS8.0软件自动打开,点击Plot下的Volume,则模型导入成功。5.1.2 Pro/E导出IGES(*.Igs)文件首先, 在Pro/E 环境下建立好零件模型或者完成零部件的装配, 然后, 选择主菜单【文件】下的【保存副本】子菜单, 弹出保存副本对话框后, 文件类型选择IGES( *.igs) ,在【新名称】框内为模型输入新名称,点击【确定】按钮会弹出输出IGES对话框, 在输出IGES 对话框中可以设置输出图元的类型、参考坐标系以及IG ES 文件结构。输出的图元类型有: 线框边、曲面、实体、壳、基准曲线和点, 缺省输出图元是曲面, 缺省是输出所有面组, 点击【面组.】选择特定面组输出。可以选择多种图元类型进行输出, 但是不能同时输出曲面和实体或者曲面和壳。单击【定制层.】按钮设置各层的输出特性。文件结构类型有: 平整、一级、所有级别、所有零件, 默认输出为平整。平整: 将组件的所有几何输出到一个IGES 文件。导入到另一个系统时, 该组件就担当一个零件的角色。应将每一个零件分别放到一个层上, 以便在接受系统中能加以区别。一级: 输出一个组件的IGES 文件, 该文件只包含顶级几何( 如组件特征) 。所有级别: 输出一个组件的IGES 文件。用它可创建带有各自的几何和外部参照的元件零件和子组件。该选项支持所有层次。所有零件: 将一个组件作为多个文件输出到IGES, 这些文件中包含所有元件和组件特征的几何信息。零件使用相同的参照坐标系, 使接受系统中的重新装配更加容易。点击【确定】完成。ANSYS 导入IGES( *.igs) 文件的方法有两种: 一种是通过ANSYS软件的用户界面操作导入; 一种是通过输入命令导入。本上机采用第一种方法。通过用户界面操作导入IGES 的步骤是:选择主菜单【File】下的子菜单【Import】的次级子菜单【IGES.】, 弹出导入IGES 属性设置对话框, 在导入IGES 属性设置对话框中可以设置: 是否导入所有数据,是否合并图元, 是否创建实体,是否删除小面。点击【OK】按钮弹出文件路径选择对话框,在文件路径选择对话框中选择好所需精度, 输入IGES 文件路径后, 点击【OK】按钮完成IGES 文件导入。5.1.3 将摩擦片Pro/E模型导入Ansys 将摩擦片模型导入Ansys软件中,如图5.3所示。 图5.3 摩擦衬片模型导入5.1.4 将摩擦片进行网格划分Ansys单元库中有100多种单元类型,每个单元都有一个表示单元类型的前缀和编号,如BEAM3、SOLID96、和SHELL143等。按类型可分为梁单元、杆单元、平面单元和三维实体单元等等。其中许多单元有好几种可选择特性来胜任不同的功能17。根据制动器的几何结构选用八节点六面体实体单元类型,在模态分析中采用SOLID187单元。鼓式制动器摩擦衬片是模压材料,它的是属性为:弹性模量():泊松比():0.25 密度():2100网格划分是生成单元和节点的过程,在有限元的求解计算中,所有施加在有限元边界上的载荷或约束,最终都是传递到有限元模型上(节点和单元)进行求解17。有限元网格的划分过程包括2个步骤:(1)建立单元数据,这些数据包括单元的种类(TYPE),单元的几何常数(R),单元的材料属性(MP)。(2).设定网格划分的参数。得到图如图5.4所示所得的节点数为19088单元数为9158。图5.4 摩擦衬片网格划分5.1.5 对摩擦片加载求解压强、力矩、惯性载荷和约束加载上以后,然后求解。最后得到摩擦片的位移云图,如图5.5所示。从图示可见,摩擦片的位移场端部较大,位移的最大处是在摩擦衬片的端部下一点位置,因为其为领踢所致,最大位移为图示MX处,最大位移为0.000307mm。没有超出最的位移量,所以满足强度要求。 图5.5 位移云图图5.6可见,在摩擦衬片上,应力较高的区域为摩擦衬片上部接近促动力作用的区域,图中标从识为MX处,最大应力为195284Pa,图中标明MN处为最小应力处,大小为65198Pa。摩擦衬片的径向增大0.153mm,考虑转动使衬片端位移增大。衬片的屈服极限为15MPa,最大应力没有超出屈服极限,所以摩擦片的设计满足材料强度要求。图5.6等效应力云图5.2制动鼓的有限元分析5.2.1 将制动鼓进行网格划分Ansys单元库中有100多种单元类型,每个单元都有一个表示单元类型的前缀和编号,如BEAM3、SOLID96、和SHELL143等。按类型可分为梁单元、杆单元、平面单元和三维实体单元等等。其中许多单元有好几种可选择特性来胜任不同的功能17。根据制动器的几何结构选用八节点六面体实体单元类型,在模态分析中采用SOLID187单元。鼓式制动器制动鼓是铸造材料,它的是属性为:弹性模量():泊松比():0.35 密度():2600网格划分是生成单元和节点的过程,在有限元的求解计算中,所有施加在有限元边界上的载荷或约束,最终都是传递到有限元模型上(节点和单元)进行求解17。有限元网格的划分过程包括2个步骤:(1)建立单元数据,这些数据包括单元的种类(TYPE),单元的几何常数(R),单元的材料属性(MP)。(2).设定网格划分的参数。得到图如图5.7所示所得的节点数为20746单元数为9876图5.7 制动鼓网格划分5.2.2 对制动鼓加载求解压强、力矩、惯性载荷和约束加载上以后,然后求解。最后得到制动鼓的位移云图,如图5.8所示。从图示可见,最大位移为图示MX处,最大位移为0.167709mm。没有超出最的位移量,所以满足强度要求。图5.8 位移云图图5.9可见,在摩擦衬片上,应力较高的区域为摩擦衬片上部接近促动力作用的区域,图中标从识为MX处,最大应力为2.04MPa,图中标明MN处为最小应力处,大小为92594Pa。制动鼓的径向增大0.1677mm,制动鼓的屈服极限为19MPa,最大应力没有超出屈服极限,所以制动鼓的设计满足材料强度要求。图5.9 等效应力云图5.3本章小结本章的主要内容是利用ANSYS软件进行鼓式制动器的三维实体建模的分析,对本次设计的可行性提供重要依据,位移云图及应力云图的体现能准确的看出制动器各零件的受力变形情况及是否符合材料要求,本章对本次设计起到了收尾的作用。 结 论本次毕业设计是以比亚迪F3轿车为研究对象,为其设计鼓式制动器。设计之初我通过查阅资料研究和总结并对轿车制动系统的结构和形式进行分析后,确定了鼓式制动器的基本形式。鼓式制动器的设计主要是摩擦片与制动蹄的配合问题,以及与制动鼓之间的摩擦问题。通过设计计算得出制动鼓的内径为300mm, 制动蹄摩擦衬片的包角=108,摩擦衬片初始角=36,摩擦衬片的宽度b=64mm,等重要设计数据。并对鼓式制动器各个零件的材料进行了选择。在通过对鼓式制动器的制动性能的分析,包括利用ANSYS软件对摩擦片进行静态分析后,得出摩擦片和制动鼓符合设计要求的结论。鼓式制动器的模型建立是用Pro/Engineer 进行的建模和装配。采用的驻车制动满足国家对汽车驻车坡度的要求,其他相关评价指标也完全符合。最后设计的汽车制动系统基本达到了预期的目标。但本次我的毕业设计当中还有很多的不足需要继续研究和思考,对于鼓式制动器的设计过程中存在的关于设计方法和步骤,通过自我总结以及和与其他设计方法比较可以更加优化设计方法。由于对有限元分析方法的知识掌握有限,无法对我所设计的制动器进行,最适合最有效的分析,这是我今后着重解决的问题。参考文献1刘惟信.汽车设计M北京:清华大学出版社, 2001.2余志生.汽车理论M北京:机械工业出版社,2000.3陈家瑞.汽车构造M北京:人民交通出版社,1999.4刘惟信.汽车制动系统的结构分析与设计计算M北京:清华大学出版社,2004.5崔靖.汽车构造M陕西:陕西科学技术出版社,1984.6王望予.汽车设计M北京:机械业出版社,2004.7吉林工业大学汽车教研室.汽车设计M.北京:机械工业出版社,1981.8张洪欣.汽车设计M北京:机械工业出版社,1999.9龚微寒.汽车现代设计制造M北京:人民交通出版社,1995.10高强.Pro/Engineer野火版从入门到精通M北京:人民邮电出版社出版社2008 . 11张国忠. 现代设计方法在汽车设计中的应用.沈阳:东北大学出版社,2002.12粟利萍.汽车实用英语M北京:电子工业出版社,2005.13龚曙光.ANSYS在应力分析设计中的应用.CAD/CAM计算机辅助设计与制造.2001,(7):70-80.14Rudolf Limpert. BRAKE DESIGN and SAFETY. Warrendale, PA 15096,USA: SAE,Inc. ,1992.15John Fenton . Hand Book of Vehicle Design Analysis. Warrendale ,PA,USA:Society of Autmotuve EngineersInc. ,1996.16 工程中的有限元方法(第3版)机械工业出版社,2004.17白金泽,孙秦,郭英男.应用ANSYS进行复杂结构应力分析J机械科学术.2003,22(9):441-443.18Parametric Technology Corporation.Pro/ENGINEER Wildfire Help CenterM USA:PTC,2003.19吴迎学.汽车鼓式制动器的模糊化设计J中南林学院学报.2000.(04).致 谢转眼间,近一学期的毕业设计就要结束了,毕业设计是专业教学计划中的最后一个教学环节,也是理论联系实际,实践性很强的一个教学环节。通过这样的一个教学环节,一方面培养学生能够独立运用所学的知识与技能解决本专业范围内一项有实际意义的设计制造、科研实验、生产管理等课题;另一方面也是培养学生综合分析问题的能力,独立解决问题的能力,为毕业后参加工作打下良好的基础。在设计期间遇到了很多具体问题,通过老师和同学们的帮助,得以及时的解决,在这里我要特别感谢王永梅老师给我的帮助,王老师给了我大量的指导,并且为我提供了良好的实习环境,通过实习让我学习到了很多的知识,这对于我的毕业设计有很大的帮助和指导作用,使我更加熟练而且实际地掌握了设计方法,也获得了实践锻炼的机会。在我遇到困难的时候王永梅老师总是能够耐心地帮助我解答和引导,有时还带我一起去参观实物,让我充分了解鼓式制动器的结构和工作原理,为我能够顺利完成毕业设计提供了非常必要的帮助。 进行了毕业设计后,离毕业的日子也就不远了,能够圆满完成毕业设计是我们所有毕业生的心愿,这必将成为大学时代美好的回忆,同时更能带给我们成就感,使自己面对今后的工作时更加有信心。这次毕业设计的收获是巨大的,这不仅仅是由于自己的努力,更重要的还有指导老师、以及同学们的帮助,在此我再次向帮助过我的人表示深深的感谢!附 录Automobile Brake SystemJohn Fenton The braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes.Two complete independent braking systems are used on the car. They are the service brake and the parking brake.The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set. The brake system is composed of the following basic components: the “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foots mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the “slave cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by the slave cylinders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows the car.The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder .Basically, all car brakes are friction brakes. When the driver applies the brake, the control device forces brake shoes, or pads, against the rotating brake drum or disks at wheel. Friction between the shoes or pads and the drums or disks then slows or stops the wheel so that the car is braked. In most modern brake systems (see Figure 15.1), there is a fluid-filled cylinder, called master cylinder, which contains two separate sections, there is a piston in each section and both pistons are connected to a brake pedal in the drivers compartment. When the brake is pushed down, brake fluid is sent from the master cylinder to the wheels. At the wheels, the fluid pushes shoes, or pads, against revolving drums or disks. The friction between the stationary shoes, or pads, and the revolving drums or disks slows and stops them. This slows or stops the revolving wheels, which, in turn, slow or stop the car.The brake fluid reservoir is on top of the master cylinder. Most cars today have a transparent r reservoir so that you can see the level without opening the cover. The brake fluid level will drop slightly as the brake pads wear. This is a normal condition and no cause for concern. If the level drops noticeably over a short period of time or goes down to about two thirds full, have your brakes checked as soon as possible. Keep the reservoir covered except for the amount of time you need to fill it and never leave a cam of brake fluid uncovered. Brake fluid must maintain a very high boiling point. Exposure to air will cause the fluid to absorb moisture which will lower that boiling point.The brake fluid travels from the master cylinder to the wheels through a series of steel tubes and reinforced rubber hoses. Rubber hoses are only used in places that require flexibility, such as at the front wheels, which move up and down as well as steer. The rest of the system uses non-corrosive seamless steel tubing with special fittings at all attachment points. If a steel line requires a repair, the best procedure is to replace the compete line. If this is not practical, a line can be repaired using special splice fittings that are made for brake system repair. You must never use copper tubing to repair a brake system. They are dangerous and illegal.Drum brakes, it consists of the brake drum, an expander, pull back springs, a stationary back plate, two shoes with friction linings, and anchor pins. The stationary back plate is secured to the flange of the axle housing or to the steering knuckle. The brake drum is mounted on the wheel hub. There is a clearance between the inner surface of the drum and the shoe lining. To apply brakes, the driver pushes pedal, the expander expands the shoes and presses them to the drum. Friction between the brake drum and the friction linings brakes the wheels and the vehicle stops. To release brakes, the driver release the pedal, the pull back spring retracts the shoes thus permitting free rotation of the wheels.Disk brakes, it has a metal disk instead of a drum. A flat shoe, or disk-brake pad, is located on each side of the disk. The shoes squeeze the rotating disk to stop the car. Fluid from the master cylinder forces the pistons to move in, toward the disk. This action pushes the friction pads tightly against the disk. The friction between the shoes and disk slows and stops it. This provides the braking action. Pistons are made of either plastic or metal. There are three general types of disk brakes. They are the floating-caliper type, the fixed-caliper type, and the sliding-caliper type. Floating-caliper and sliding-caliper disk brakes use a single piston. Fixed-caliper disk brakes have either two or four pistons.The brake system assemblies are actuated by mechanical, hydraulic or pneumatic devices. The mechanical leverage is used in the parking brakes fitted in all automobile. When the brake pedal is depressed, the rod pushes the piston of brake master cylinder which presses the fluid. The fluid flows through the pipelines to the power brake unit and then to the wheel cylinder. The fluid pressure expands the cylinder pistons thus pressing the shoes to the drum or disk. If the pedal is released, the piston returns to the initial position, the pull back springs retract the shoes, the fluid is forced back to the master cylinder and braking ceases.The primary purpose of the parking brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by the driver when a separate parking braking hand lever is set. The hand brake is normally used when the car has already stopped. A lever is pulled and the rear brakes are approached and locked in the “on” position. The car may now be left without fear of its rolling away. When the driver wants to move the car again, he must press a button before the lever can be released. The hand brake must also be able to stop the car in the event of the foot brake failing. For this reason, it is separate from the foot brake uses cable or rods instead of the hydraulic system.Anti-lock Brake System Anti-lock brake systems make braking safer and more convenient, Anti-lock brake systems modulate brake system hydraulic pressure to prevent the brakes from locking and the tires from skidding on slippery pavement or during a panic stop.Anti-lock brake systems have been used on aircraft for years, and some domestic car were offered with an early form of anti-lock braking in late 1990s. Recently, several automakers have introduced more sophisticated anti-lock system. Investigations in Europe, where anti-lock braking systems have been available for a decade, have led one manufacture to state that the number of traffic accidents could be reduced by seven and a half percent if all cars had anti-lock brakes. So some sources predict that all cars will offer anti-lock brakes to improve the safety of the car. Anti-lock systems modulate brake application force several times per second to hold the tires at a controlled amount of slip; all systems accomplish this in basically the same way. One or more speed sensors generate alternating current signal whose frequency increases with the wheel rotational speed. An electronic control unit continuously monitors these signals and if the frequency of a signal drops too rapidly indicating that a wheel is about to lock, the control unit instructs a modulating device to reduce hydraulic pressure to the brake at the affected wheel. When sensor signals indicate the wheel is again rotating normally, the control unit allows increased hydraulic pressure to the brake. This release-apply cycle occurs several time per second to “pump” the brakes like a driver might but at a much faster rate.In addition to their basic operation, anti-lock systems have two other things in common. First, they do not operate until the brakes are applied with enough force to lock or nearly lock a wheel. At all other times, the system stands ready to function but does not interfere with normal braking. Second, if the anti-lock system fail in any way, the brakes continue to operate without anti-lock capability. A warning light on the instrument panel alerts the driver when a problem exists in the anti-lock system.The current Bosch component Anti-lock Braking System (ABS), is a second generation design wildly used by European automakers such as BWM, Mercedes-Benz and Porsche. ABS system consists of : four wheel speed sensor, electronic control unit and modulator assembly. A speed sensor is fitted at each wheel sends signals about wheel rotation to control unit. Each speed sensor consists of a sensor unit and a gear wheel. The front sensor mounts to the steering knuckle and its gear wheel is pressed onto the stub axle that rotates with the wheel. The rear sensor mounts the rear suspension member and its gear wheel is pressed onto the axle. The sensor itself is a winding with a magnetic core. The core creates a magnetic field around the winding, and as the teeth of the gear wheel move through this field, an alternating current is induced in the winding. The control unit monitors the rate o change in this frequency to determine impending brake lockup. The control units function can be divided into three parts: signal processing, logic and safety circuitry. The signal processing s
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。