资源目录
压缩包内文档预览:
编号:24999721
类型:共享资源
大小:5.49MB
格式:ZIP
上传时间:2019-11-18
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
20
积分
- 关 键 词:
-
吹风
机头
注射
设计
- 资源描述:
-
吹风机头的注射模设计,吹风,机头,注射,设计
- 内容简介:
-
南京理工大学泰州科技学院毕业设计(论文)开题报告学 生 姓 名:张荣学 号:05010144专 业:机械工程及自动化 设计(论文)题目:吹风机头的注射模设计指 导 教 师:殷劲松 2009 年 3月 22日开题报告填写要求1开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇科技论文的信息量,一般一本参考书最多相当于三篇科技论文的信息量(不包括辞典、手册);4有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2009年3月15日”或“2009-03-15”。 毕 业 设 计(论 文)开 题 报 告1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述:文 献 综 述摘要 塑料工业近20年来发展十分迅速,早在7年前塑料的年产量按体积计算已经超过钢铁和有色金属年产量的总和,塑料制品在汽车、机电、仪表、航天航空等国家支柱产业及与人民日常生活相关的各个领域中得到了广泛的应用。塑料制品成形的方法虽然很多,但最主要的方法是注塑成形,世界塑料成形模具产量中约半数以上是注塑模具。随着现代塑料制品的形状越来越复杂,塑料模具的设计也越来越复杂。在现代模具设计制造过程中都运用了 CAD/CAE/CAM、先进设备、手工加工、检测手段、反向工程、快速成型的方法1。关键词 塑料工业 注射模具 CAD/CAE/CAM 1 我国塑料模具背景 随着科学技术的快速发展,全球一体化的进程不断加快,人们对生活的质量也提出了更新、更高的要求。汽车、家电、办公用品、工业电器、建筑材料、电子通信等行业的塑料制品需求量正在逐年增大,其内容也在不停的变化中,从而促使模具制造业快速地发展,而模具工业是制造业中的一项基础产业,也是将技术成果转化基础之所在,同时模具工业又是高新技术产业的重要领域2。模具是工业生产中的重要的工艺装备,它被用来成型具有一定形状和尺寸的各种制品。一个国家模具生产能力的强弱、水平的高低、直接影响着许多工业部门的新产品和老产品的根新换代,影响着产品质量和经济效益的提高。在各种材料加工工业中广泛的使用着各种模具。对塑料模具的主要是:压塑成型模具,注塑成型模具,传递成型模具,中空制品吹塑成型模具,和热成型模具六种3。这六种加工方法都广泛应用于我们的塑料制品加工中。塑料制品加工行业的显著特点之一是高效率、大批量的生产、这种生产方式要求尽量缩短模具的生产周期,提高模具的制造质量。注塑模具的设计要考虑到塑料熔体流体行为、冷却行为等加工方面的问题,又要考虑模具制造装配等结构方面的问题4。我们对塑料模具的全面要求是:能高效的生产出外观和性能均符合使用要求的制品。模具使用时要求高效率,自动化,操作方便等。模具的制造要求模具零件的加工工艺性能好,选材合理,制造容易,成本低廉。而且在我国的塑料模具使用上,以注塑模具的使用量最大,也最为普遍4。2 我国塑料注射模具的发展现状对于传统的注塑模具设计我们普遍采用纯人工的方法,从计算到制图等涉及完全由人靠人工完成。而随着计算机技术的发展,以及大型的计算机辅助软件的日趋成熟,我们更多地采用计算机辅助技术。二十世纪50年代的出现到80年代的实用化,计算机辅助技术给人类的工作大大减少了工作量,并增加了设计的准确性。对于塑料制件的设计,整个的过程包括造型设计,力学分析以及图形的绘制。这些都可以通过计算机辅助设计(CAD)进行。通过人机交互操作的方式,可以在计算机上直观地、形象地、建立之间的三维几何模型,并能从不同的角度观察设计的效果。同时又可通过计算机快速准确地进行理论塑件的分析计算。利用数据库和图形库进行机构设计,最后完成详细设计,编织技术文件,和绘制全部图纸5。对于塑料注塑模具的设计,同样可以通过计算机辅助完成,我们对不同的模具设计可以使用不同的软件,在设计完成后还可以通过CAE软件进行对熔体在模热流动过程的模拟,冷却分析软件可以通过计算机模拟熔体冷却凝固的过程和模内的温度变化,如制品缺陷,翘曲,变形,内应力等的设计优化。随着计算机技术的迅速发展,产品的设计和生产方法都在发生着显著的变化。计算机辅助技术已经逐渐成为了我们在日常工程中不可缺少的一种工具。它主要是计算机辅助设计(CAD),计算机辅助工程(CAE),计算机辅助制造(CAM) 等技术的有机结合。它具有高智力,知识密集,综合型强,效益高等优点。2.1 现代塑料注射模具的设计对一般的产品而言,生产过程可以分为初步设计,详细设计,生产准备和生产制造四个阶段。在初步设计阶段,可以用计算机进行文献的检索,以及使用相关的软件进行几何建模,性能预测,机构分析,强度分析,等数值模拟分析计算。在详细设计阶段,利用计算机进行详细的几何建模,性能预测,机构分析,强度分析,等数值模拟分析计算,然后通过对存储在数据库中的设计标准,规范等数据进行检索,然后进行细致的几何形状和结构修改,建立几何模型2。在市场竞争日益激烈的今天,企业要想在市场竞争中占有一席之地,就必须在各方面提高自己。比如,提高生产率,降低产品的生产周期,降低产品在开发中的成本等,而这些都可以通过采用计算机辅助技术达到。利用现代的CAD、CAE、CAM、CAPP、CAGP等技术可以使产品的设计水平和制造水平大大的提高。将计算机技术与工程中领域中的专业技术结合起来,实现产品的创新设计、制造,已成为新一代发展技术的核心。而且,现在,计算机工程上使用的软件在飞速的发展。有很多大公司的软件已经十分成熟,如美国EDS公司的UG 、美国PTC公司的 Pro/Engineer、美国SDRC的IDEAS,法国MATRA公司的Eucld,以及数据库管理Oracle 等大型的软件6。以及在一些公司和高校中经常使用的如Pro/Engineer、Solidworks、MasterCAM等中端的软件,还有一些大家经常使用如AUTOCAD等低端软件。这些软件都已经为我们的工程带来的很大的方便。在塑料注射模具的设计过程中,我们有大量的软件可以使用,如Pro/E是融线框模型、曲面造型和实体造型为一体,是参数化和特征化的系统7。Pro/E中的Moldesign模块提供了方便、实用的三维模具设计与分析的各种工具,可辅助设计人员由产品的三维模型建立模具、装配模型,设计分型面、浇注系统和冷却系统成型(即凹模和凸模)部分的设计;并利用EMX提供的标准件库和标准模架库,完成顶出机构与模具总体装配设计。另外可以在Pro/E中进行塑料模具设计。它能让模具设计人员创建、修改和分析模具构件,并在模具设计变化时,快速将其更新。利用Pro/E进行模具设计,可以实现以下功能:(1)评估零件:使用“拔模检测”和“厚度检测”功能,分析产品零件是否符合开模条件。(2)创建模具成型零件:装配模具模型对零件进行收缩率设置创建分型面(包括滑块、嵌件的分型面)分割工件以创建模具体积块抽取模具体积块来产生模具成型零件(模具零件的实体模型与产品模型相关,可用于数控加工)。(3)组装模具标准件:组装注模具型腔的放置和陈列顶杆及其他模具标准件的组建流道的自动创建冷却水路的自动创建(包括3D冷却水路干涉检测)定义开模动作,进行开模模拟及干涉检查。(4)创建模具工程图:生成二维模具工程图,以指导模具生产。采用Pro/E提供CAD/CAM和Moldesign模块进行注塑模具的设计和加工,不仅缩短了模具的生产周期,而且还为模具和新产品开发提供了一种新的手段,从而大大地降低了产品和模具的生产成本,增加了社会效益和经济效益。对于制件及模具的分析我们也经常使用MOLDFLOW软件8。对于一些中小型的企业,或者是一些基本的工程上的设计,Pro/E完全可以满足使用的要求,并不需要太高的成本,并且更加容易入手。在一定的范围内还是值得推广的,它是目前广泛应用的完全基于WINDOWS的CAD/CAE/CAM软件,具有强大的基于特征的参数化实体建模功能,可以完成复杂的产品设计大型产品的装配过程。对于塑料模具的设计现在也有了很多新的技术应用其中,例如气体辅助注塑成型。气体辅助注塑成型是为了克服传统注塑成型的局限性而发展起来的一种新型注塑成型工艺,自20世纪90年代以来受到了普遍的关注。它的工艺过程是先在模具型腔内注入部分或全部的熔融树脂,然后立即注入高压的惰性气体,利用气体推动熔体完成充模过程或填补因树脂收缩后留下的空隙,在塑件固化后在将气体排出,再脱出中空的塑件。气辅注塑成型工艺大致分为:树脂注射、延时、气体注射、气体保压并冷却、排气、脱模几个阶段。气辅技术有很多优点:(1)消除厚壁塑件的表面缺陷;(2)气体保压压力梯度很小,保压效果好,可降低制品内应力,同时减少翘曲变形;(3)塑件尺寸和形位精度高;(4)节约原料,最高可达50%;(5)减少冷却时间,使生产周期缩短;(6)采用短射技术使注塑压力降低,同时所需锁模力也大幅下降。气辅注塑压力约725MP,而普通注塑为4080MP或更高。 通过利用计算机辅助的设计,是设计的工作量大大的减少,同时也可以通过软件的分析,使其结构更加得简单、合理,可以减少我们以往对模具进行的各种修改,在计算机上进行的结构优化能更节省所需的人力物力,同时使结构更加合理9。利用Moldflow软件对注塑模具进行结构设计是十分主流的软件,我们可以用MPI分析注射成型工艺,确定浇口数量。MPI是专业模流软件,可以模拟热塑性塑料注射成型过程中的填充,和冷却过程,并能输出量化的过程参数、曲线和图表。作为分析产品结构是否合理、怎样选择合适的注射材料、怎样确定合理的浇口位置、预测熔接痕的位置、最终制品质量如何等的依据,通过模流分析可以获得合理的模具结构10。在注塑成型工艺以及模具的设计过程中,浇口位置是一个很重要的设计变量,它与塑料性能、塑件形状和尺寸、模具结构及注射工艺等很多因素有关。不合理的浇口将会使塑件产生缺料,翘曲,熔体破碎,熔接痕、缩孔、白斑、烧焦等一系列的质量缺陷,甚至直接产生废品,因此正确选择浇口位置是提高塑件质量的重要环节11。对于模具浇口位置的确定,也有了很多好的方法,如:经验搜索法优化浇口位置最简单的是穷尽法,随机搜索法和决策法也是经常用的。经验搜索法是在搜索法和决策法的基础上,融入设计者的经验提出的。既由设计者凭经验和浇口设计的使用准则给出可行方案,以这些方案为起点搜索出局部最优;然后比较个局部最优值得到全局最优值12。还有基于注射成型模拟技术的塑料件浇口位置的优化。运用成型软件MPI可以合理的确定出浇口的位置,运用MPI中的最佳浇口分析模块初步找到一个最佳浇口位置,然后对不同浇口位置和不同过程参数设置环境下的塑料成型过程进行模拟,比较其填充效果,综合预测缺陷和工艺条件,从而达到制件浇口位置的优化设计13.2.2 现代塑料注射模具的制造现代经济的飞速发展,推动了我国模具工业的前进。CAD/CAE/CAM 技术的日臻完善和在模具制造上的应用,使其在现代塑料模具的制造中发挥越来越重要的作用,C AD / C AE /CA M 技术已成为现代塑料模具的制造必然趋势。CAD/CAE/CAM 一体化集成技术是现代塑料模具制造中最先进最合理的生产方式。使用计算机辅助设计、辅助工程与制造系统,按设计好的模具零件分别编制该零件的数控加工程序是从设计到制造的一个必然过程。具有现代塑料模具设计制造能力的工厂,该过程都是从CAD/CAE/CAM 系统内进行的,其加工程序直接由联机电缆输入加工机台,在编制程序时可利用系统中的加工模拟功能进行细致的模拟,将零件刀具、刀柄、夹具,平台及刀具移动速度、路径等显示出来,以便观察整个模具零件的切削过程和前后的形状,以检查程序编制的正确性,这对于复杂的多曲面的模具零件尤为重要14。现代塑料模具制造的必然趋势,就是机械加工尽可能地取代人工加工,这就确定了先进设备在现代制造中的作用,尤其现在加工中心、数控高速成型铣床、数控铣床、数控车床、多轴联动机床、数控模具雕刻机、电火花加工机床、数控精密磨床、三坐标测量机、扫描仪等现代化设备在工厂中的广泛使用,而且这些设备大部分所用的程序基本上都是应用 C A D /CAE/CAM 系统产生的,机台与计算机联机,加工程序是通过联机电缆输入机台的,操作人员按照规定的程序装夹工件,配备刀具和操作,机台就能自动地完成该机台上应该完成的加工任务,并将理想的模具零件制造出来或为下一加工工序完成规定的部分。操作人员的熟练程度和情绪变化不太影响加工质量和加工效益,这也是现代模具加工优于传统机械加工的一个方面。3 我国塑料模具的发展趋势目前,全世界模具的年产值约为650亿美元,我国模具工业的产值在国际上排名位居第三位,仅次于日本和美国。虽然近几年来,我国模具工业的技术水平已取得了很大的进步,但总体上与工业发达的国家相比仍有较大的差距。目前,我国模具工业的当务之急是加快技术进步,调整产品结构,增加高档模具的比重,通过求品质来求效益,提高模具的国产化程度,减少对进口模具的依赖15。未来我国模具工业和技术的主要发展方向将是:(1)大力普及、广泛应用C A D /CAE/CAM技术,逐步走向集成化。现代模具设计制造不仅应强调信息的集成,更应该强调技术、人和管理的集成;(2)提高大型、精密、复杂与长寿命模具的设计与制造技术,逐步减少模具的进口量,增加模具的出口量;(3)在塑料注射成型模具中,积极应用热流道,推广气辅或水辅注射成型,以及高压注射成型技术,满足产品的成型需要;(4)提高模具标准化水平和模具标准件的使用率。模具标准件是模具基础,其大量应用可缩短模具设计制造周期,同时也会显著提高模具的制造精度和使用性能,大大地提高模具质量。我国模具商品化、标准化率均低于30%,而先进国家均高于70% ,每年我们要从国外进口相当数量的模具标准件,其费用约占年模具进口额的3%8%;(5)发展快速制造成型和快速制造模具,即快速成型制造技术,以便迅速制造出产品的原型与模具,降低成本;(6)积极研究与开发模具的抛光技术、设备与材料,满足特殊产品的需要;(7)推广应用高速铣削、超精度加工和复杂加工技术与工艺,满足模具制造的需要;(8)开发优质模具材料和先进的表面处理技术,提高模具的可靠性;(9)研究和应用模具的高速测量技术、逆向工程与并行工程,最大限度地提高模具的开发效率与成功率;(10)开发新的成型工艺与模具,以满足未来的多学科、多功能综合产品开发设计技术。参 考 文 献1 李学锋.模具设计与制造实训教程.北京:化学工业出版社,2004.72 浙江精诚模具机械有限公司.浅谈模具产业的发展J.塑料工业,2006,34(10):68-69.3 申开智.塑料成型模具(第二版)M.北京:中国轻工业出版社,2002,9.4 廖正品.中国塑料工业“十五”回顾与“十一五”发展思路.塑料工业,2006,34:1-8.5 王定标,郭茶秀,向飒. CAD/CAE/CAM技术与应用M.化学工业出版社,2005,6.6 宁汝新,赵汝嘉,欧宗瑛.CAD/CAM技术M.机械工业出版社,1999,11.7 王江涛.基于Pro/E塑料注射模具设计的研究与开发D.中南林学院,2004 8 张小浦.基于Pro/E的注射模CAD集成系统的开发D.兰州理工大学,2005 9 周永泰.中国塑料模具发展现状与出口前景.中美塑料高峰论坛(三),2008,810 金涤尘.现代模具制造技术.北京:机械工程出版社,200111 李茹娟,李萌盛.基于CAE注射模浇口与保压的优化设计J.塑料工业,2006,34(10):32-35.12 黄晓燕.注塑模浇口位置新方法经验搜索法J.塑料工业,2006,34(5):28-33.13 钟佩思,赵国强,武迎迎.基于注射成型模拟技术的塑料件浇口位置的优化J.塑料工业,2006,34(7):29-31.14 李光耀.浅谈现代模具的设计与制造.橡塑技术与装备j,2005,32:2515 周永泰.我国塑料模具现状与发展趋势.塑料,2000,6 毕 业 设 计(论 文)开 题 报 告本课题要研究或解决的问题和拟采用的研究手段(途径):本设计要求使用Pro/E大型CAD软件对所给吹风机头实物进行三维造型,并进行测绘零件图纸,设计成型注射模具。吹风机头是主要以回转体的结构为主的零件,对于注塑模的设计比较简单,使用常规的设计方法就能够设计出合理简单有效的模具。吹风机头的材料:ABS对于模具的设计,首先对要制造的吹风机头进行测绘,然后对尺寸进行合理的圆整,然后利用Pro/E对塑料吹风机头进行三维造型设计。根据要求模具的基本方案是:一、对于注塑机的选择,由于机构的结构和产量以及所给的各项要求,进行综合的考虑,采用卧式注塑机;二、模具结构设计 1. 注射模类型选择本课题宜采用哈夫分型注射模2浇注系统设计所给设计要求是一模一腔,因此将型腔对称放置,使用圆锥型主流道,将分流道对称设置,分流道截面采用梯形截面,浇口采用直接浇口,利用分型面或配合间隙排气;3成型零件结构设计由于结构的上下结构特征,在下模板设计了型芯;4脱模机构设计使用顶杆进行脱模,可使用四处顶杆,同时在吹风机头的下侧使用一推板,使用一推板可防止在推模时对塑件造成破坏;5.注塑模温调节系统对型芯使用喷流式冷却回路,凹模使用多层水道。三、零件图的绘制在对模具的结构进行了基本的设计后,首先要对吹风机头进行三维图以及零件图的绘制,以为后一部的加工提供必要的尺寸及一些数据参数。四、对模具进行模具的CAD设计在对模具进行基本设计之后,就要进行相关的设计计算,在得到正确的数据后,利用Pro/E进行相关的设计,通过进行人机交互,即可得到简单又优良的设计。在对模具进行设计完成之后,我们得到了模具的三维图。通过Pro/E可以生成模具的装配图,同时生成我们所需要的所有零件的图纸。完成以上的工作之后,还要进行注射模具的制造工艺设计,在完成所有的设计之后进行设计说明书的撰写。 毕 业 设 计(论 文)开 题 报 告指导教师意见:1对“文献综述”的评语:通过对文献资料的查询与总结,从对国内塑料模具工业的发展现状进行了综述,介绍了模具设计与制造方面的新技术、新工艺,并就今后模具工业和技术的主要发展方向进行了展望。文献综述基本反映了我国模具制造业尤其是塑料模具制造的情况,通过分析完成了模具的初步设计方案,为课题的研究作了先期准备。2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:课题主要根据给定吹风机头零件进行测绘,按塑件成型完成模具设计与制造工艺,结合课题学习和运用模具制造中流行的CAD软件,并完成一定的设计任务。 课题具有较强的工程训练性,塑件外形、结构不太复杂,因此成型注射模具也不太复杂,需要采用哈夫结构。设计要涉及模具设计、制造工艺及CAD等方面,涉及面较广,难度适中,工作量适中,根据该学生的现有基础,通过设计期间的努力可以较好地完成课题设计任务。 指导教师: 年 月 日所在专业审查意见: 负责人: 年 月 日DOI 10.1007/s00170-004-2328-8ORIGINAL ARTICLEInt J Adv Manuf Technol (2006) 28: 6166Fang-Jung Shiou Chao-Chang A. Chen Wen-Tu LiAutomated surfacefinishing of plastic injection mold steelwith spherical grinding and ball burnishingprocessesReceived: 30 March 2004 / Accepted: 5 July 2004 / Published online: 30 March 2005 Springer-Verlag London Limited 2005Abstract This study investigates the possibilities of automatedspherical grinding and ball burnishing surface finishing pro-cesses in a freeform surface plastic injection mold steel PDS5on a CNC machining center. The design and manufacture ofa grinding tool holder has been accomplished in this study.The optimal surface grinding parameters were determined usingTaguchis orthogonal array method for plastic injection moldingsteel PDS5 on a machining center. The optimal surface grind-ing parameters for the plastic injection mold steel PDS5 werethe combination of an abrasive material of PA Al2O3, a grind-ing speed of 18000 rpm, a grinding depth of 20 m, and a feedof 50 mm/min. The surface roughness Raof the specimen can beimproved from about 1.60 m to 0.35 m by using the optimalparameters for surface grinding. Surface roughness Racan befurther improved from about 0.343 m to 0.06m by using theball burnishing process with the optimal burnishing parameters.Applying the optimal surface grinding and burnishing parame-ters sequentially to a fine-milled freeform surface mold insert,the surface roughness Raof freeform surface region on the testedpart can be improved from about 2.15 m to 0.07m.Keywords Automated surface finishing Ballburnishing process Grinding process Surface roughness Taguchis method1 IntroductionPlastics are important engineering materials due to their specificcharacteristics, such as corrosion resistance, resistance to chemi-cals, low density, and ease of manufacture, and have increasinglyF.-J. Shiou (u) C.-C.A. Chen W.-T. LiDepartment of Mechanical Engineering,National Taiwan University of Science and Technology,No. 43, Section 4, Keelung Road, 106 Taipei, Taiwan R.O.C.E-mail: .twTel.: +88-62-2737-6543Fax: +88-62-2737-6460replaced metallic components in industrial applications. Injec-tion molding is one of the important forming processes for plas-tic products. The surface finish quality of the plastic injectionmold is an essential requirement due to its direct effects on theappearance of the plastic product. Finishing processes such asgrinding, polishing and lapping are commonly used to improvethe surface finish.The mounted grinding tools (wheels) have been widely usedin conventional mold and die finishing industries. The geometricmodel of mounted grinding tools for automated surface finish-ing processes was introduced in 1. A finishing process modelof spherical grinding tools for automated surface finishing sys-tems was developed in 2. Grinding speed, depth of cut, feedrate, and wheel properties such as abrasive material and abrasivegrain size, are the dominant parameters for the spherical grind-ing process, as shown in Fig. 1. The optimal spherical grindingparameters for the injection mold steel have not yet been investi-gated based in the literature.In recent years, some research has been carried out in de-termining the optimal parameters of the ball burnishing pro-cess (Fig. 2). For instance, it has been found that plastic de-formation on the workpiece surface can be reduced by usinga tungsten carbide ball or a roller, thus improving the surfaceroughness, surface hardness, and fatigue resistance 36. Theburnishing process is accomplished by machining centers 3,4and lathes 5,6. The main burnishing parameters having signifi-cant effects on the surface roughness are ball or roller material,burnishing force, feed rate, burnishing speed, lubrication, andnumber of burnishing passes, among others 3. The optimal sur-face burnishing parameters for the plastic injection mold steelPDS5 were a combination of grease lubricant, the tungsten car-bide ball, a burnishing speed of 200 mm/min, a burnishing forceof 300 N, and a feedof 40 m7. The depth of penetration oftheburnished surface using the optimal ball burnishing parameterswas about 2.5 microns. The improvement of the surface rough-ness through burnishing process generally ranged between 40%and 90% 37.The aim of this study was to develop spherical grinding andball burnishing surface finish processes of a freeform surface62plastic injection mold on a machining center. The flowchart ofautomated surface finish using spherical grinding and ball bur-nishing processes is shown in Fig. 3. We began by designing andmanufacturing the spherical grinding tool and its alignment de-vice for use on a machining center. The optimal surface sphericalgrinding parameters were determined by utilizing a Taguchisorthogonal array method. Four factors and three correspondinglevels were then chosen for the Taguchis L18matrix experiment.The optimal mounted spherical grinding parameters for surfacegrinding were then applied to the surface finish of a freeformsurface carrier. To improve the surface roughness, the groundsurface was further burnished, using the optimal ball burnishingparameters.Fig.1. Schematic diagram of the spherical grinding processFig.2. Schematic diagram of the ball-burnishing processFig.3. Flowchart of automated surface finish using spherical grinding andball burnishing processes2 Design of the spherical grinding tool and itsalignment deviceTo carry out the possible spherical grinding process of a freeformsurface, the center of the ball grinder should coincide with thez-axis of the machining center. The mounted spherical grindingtool and its adjustment device was designed, as shown in Fig. 4.The electric grinder was mounted in a tool holder with two ad-justable pivot screws. The center of the grinder ball was wellaligned with the help of the conic groove of the alignment com-ponents. Having aligned the grinder ball, two adjustable pivotscrews were tightened; after which, the alignment componentscould be removed. The deviation between the center coordi-nates of the ball grinder and that of the shank was about 5m,which was measured by a CNC coordinate measuring machine.The force induced by the vibration of the machine bed is ab-sorbed by a helical spring. The manufactured spherical grind-ing tool and ball-burnishing tool were mounted, as shown inFig. 5. The spindle was locked for both the spherical grindingprocess and the ball burnishing process by a spindle-lockingmechanism.63Fig.4. Schematic illustration of the spherical grinding tool and its adjust-ment device3 Planning of the matrixexperiment3.1 Configuration of Taguchis orthogonal arrayThe effects of several parameters can be determined efficientlyby conducting matrix experiments using Taguchis orthogonalarray 8. To match the aforementioned spherical grinding pa-rameters, the abrasive material of the grinder ball (with the diam-eter of 10 mm), the feed rate, the depth of grinding, and therevolution of the electric grinder were selected as the four experi-mental factors (parameters) and designated as factor A to D (seeTable 1) in this research. Three levels (settings) for each factorwere configured to cover the range of interest, and were identi-Fig.5. a Photo of the spherical grinding tool bPhoto of the ball burnishing toolTable1. The experimental factors and their levelsFactorLevel123A. Abrasive materialSiCAl2O3, WAAl2O3, PAB. Feed (mm/min)50100200C. Depth of grinding (m)205080D. Revolution (rpm)120001800024000fied by the digits 1, 2, and 3. Three types of abrasive materials,namely silicon carbide (SiC), white aluminum oxide (Al2O3,WA), and pink aluminum oxide (Al2O3, PA), were selected andstudied. Three numerical values of each factor were determinedbased on the pre-study results. The L18orthogonal array was se-lected to conduct the matrix experiment for four 3-level factorsof the spherical grinding process.3.2 Definition of the data analysisEngineering design problems can be divided into smaller-the-better types, nominal-the-best types, larger-the-better types,signed-target types, among others 8. The signal-to-noise (S/N)ratio is used as the objective function for optimizing a product orprocess design. The surface roughness value of the ground sur-face via an adequate combination of grinding parameters shouldbe smaller than that of the original surface. Consequently, thespherical grinding process is an example of a smaller-the-bettertype problem. The S/N ratio, , is defined by the followingequation 8: = 10log10(meansquarequalitycharacteristic)= 10log10?1nn?i=1y2i?.(1)where:yi: observations of the quality characteristic under different noiseconditionsn: number of experimentAfter the S/N ratio from the experimental data of each L18orthogonal array is calculated, the main effect of each factorwas determined by using an analysis of variance (ANOVA) tech-nique and an F-ratio test 8. The optimization strategy of the64smaller-the better problem is to maximize , as defined by Eq. 1.Levels that maximize will be selected for the factors that havea significant effect on . The optimal conditions for sphericalgrinding can then be determined.4 Experimentalwork and resultsThe material used in this study was PDS5 tool steel (equiva-lent to AISI P20) 9, which is commonly used for the molds oflarge plastic injection products in the field of automobile com-ponents and domestic appliances. The hardness of this materialis about HRC33 (HS46) 9. One specific advantage of this ma-terial is that after machining, the mold can be directly usedfor further finishing processes without heat treatment due to itsspecial pre-treatment. The specimens were designed and manu-factured so that they could be mounted on a dynamometer tomeasure the reaction force. The PDS5specimen was roughly ma-chined and then mounted on the dynamometer to carry out thefine milling on a three-axis machining center made by Yang-Iron Company (type MV-3A), equipped with a FUNUC Com-pany NC-controller (type 0M) 10. The pre-machined surfaceroughness was measured, using Hommelwerke T4000 equip-ment, to be about 1.6m. Figure 6 shows the experimentalset-up of the spherical grinding process. A MP10 touch-triggerprobe made by the Renishaw Company was also integrated withthe machining center tool magazine to measure and determinethe coordinated origin of the specimen to be ground. The NCcodes needed for the ball-burnishing path were generated byPowerMILL CAM software. These codes can be transmitted tothe CNC controller of the machining center via RS232 serialinterface.Table 2 summarizes the measured ground surface roughnessvalue Raand the calculated S/N ratio of each L18orthogonal ar-ray using Eq. 1, after having executed the 18 matrix experiments.The average S/N ratio for each level of the four factors can beobtained, as listed in Table 3, by taking the numerical values pro-vided in Table 2. The average S/N ratio for each level of the fourfactors is shown graphically in Fig. 7.Fig.6. Experimental set-up to determine the op-timal spherical grinding parametersTable2. Ground surface roughness of PDS5 specimenExp.Inner arrayMeasured surfaceResponseno.(control factors)roughness value (Ra)ABCDy1y2y3S/N ratioMean(m)(m)(m) (dB)y (m)111110.350.350.359.1190.350212220.370.360.388.6340.370313330.410.440.407.5970.417421230.630.650.643.8760.640522310.730.770.782.3800.760623120.450.420.397.5200.420731320.340.310.329.8010.323832130.270.250.2811.4710.267933210.320.320.329.8970.3201011220.350.390.408.3900.3801112330.410.500.436.9680.4471213110.400.390.427.8830.4031321130.330.340.319.7120.3271422210.480.500.476.3120.4831523320.570.610.534.8680.5701631310.590.550.545.0300.5601732120.360.360.358.9540.3571833230.570.530.535.2930.543Table3. Average S/N ratios by factor levels (dB)FactorABCDLevel 18.0997.6559.1106.770Level 25.7787.4537.0678.028Level 38.4087.1766.1077.486Effect2.6300.4793.0031.258Rank2413Mean7.428The goal in the spherical grinding process is to minimize thesurface roughness value of the ground specimen by determin-ing the optimal level of each factor. Since log is a monotonedecreasing function, we should maximize the S/N ratio. Conse-quently, we can determine the optimal level for each factor asbeing the level that has the highest value of . Therefore, based65Fig.7. Plots of control factor effectson the matrix experiment, the optimal abrasive material was pinkaluminum oxide; the optimal feed was 50 mm/min; the optimaldepth of grinding was 20 m; and the optimal revolution was18000 rpm, as shown in Table 4.The main effect of each factor was further determined byusing an analysis of variance (ANOVA) technique and an F ratiotest in order to determine their significance (see Table 5). TheF0.10,2,13is 2.76 for a level of significance equal to 0.10 (or90% confidence level); the factors degree of freedom is 2 andthe degree of freedom for the pooled error is 13, according toF-distribution table 11. An F ratio value greater than 2.76 canbe concluded as having a significant effect on surface roughnessand is identified by an asterisk. As a result, the feed and the depthof grinding have a significant effect on surface roughness.Five verification experiments were carried out to observe therepeatability of using the optimal combination of grinding pa-rameters, as shown in Table 6. The obtainable surface roughnessvalue Raof such specimen was measured to be about 0.35 m.Surface roughness was improved by about 78% in using the op-Table4. Optimal combination of spherical grinding parametersFactorLevelAbrasiveAl2O3, PAFeed50 mm/minDepth of grinding20mRevolution18000 rpmTable5. ANOVA table for S/N ratio of surface roughnessFactorDegreesSumMeanF ratioof freedomof squaressquaresA224.79112.3963.620B20.6920.346C228.21814.1094.121D24.7762.388Error939.043Total1797.520Pooled to error1344.5113.424F ratio value 2.76 has significant effect on surface roughnessTable6. Surface roughness value of the tested specimen after verificationexperimentExp. no.Measured value Ra(m)Mean y (m)S/N ratioy1y2y310.300.310.330.31310.07320.360.370.360.3638.80230.360.370.370.3678.71440.350.370.340.3539.03150.330.360.350.3479.163Mean0.3499.163timal combination of spherical grinding parameters. The groundsurface was further burnished using the optimal ball burnishingparameters. A surface roughness value of Ra= 0.06 m was ob-tainable after ball burnishing. Improvement of the burnished sur-face roughness observed with a 30 optical microscope is shownin Fig. 8. The improvement of pre-machined surfaces roughnesswas about 95% after the burnishing process.The optimal parameters for surface spherical grinding ob-tained from the Taguchis matrix experiments were applied tothe surface finish of the freeform surface mold insert to evalu-ate the surface roughness improvement. A perfume bottle wasselected as the testedcarrier. The CNCmachining of the mold in-sert for the tested object was simulated with PowerMILL CAMsoftware. After fine milling, the mold insert was further groundwith the optimal spherical grinding parameters obtained fromthe Taguchis matrix experiment. Shortly afterwards, the groundsurface was burnished with the optimal ball burnishing parame-ters to further improve the surface roughness of the tested object(see Fig. 9). The surface roughness of the mold insert was meas-ured with Hommelwerke T4000 equipment. The average surfaceroughness value Raon a fine-milled surface of the mold insertwas 2.15 m on average; that on the ground surface was 0.45 mFig.8. Comparison between the pre-machined surface, ground surface andthe burnished surface of the tested specimen observed with a toolmakermicroscope (30)66Fig.9. Fine-milled, ground and burnished mold insert of a perfume bottleon average; and that on burnished surface was 0.07 m on aver-age. The surface roughness improvement of the tested object onground surface was about (2.150.45)/2.15 = 79.1%, and thaton the burnished surface was about (2.150.07)/2.15 = 96.7%.5 ConclusionIn this work, the optimal parameters of automated spheri-cal grinding
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。