八年级上册《等腰三角形的轴对称性》3导学设计_第1页
八年级上册《等腰三角形的轴对称性》3导学设计_第2页
八年级上册《等腰三角形的轴对称性》3导学设计_第3页
八年级上册《等腰三角形的轴对称性》3导学设计_第4页
八年级上册《等腰三角形的轴对称性》3导学设计_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 18 八年级上册等腰三角形的轴对称性 3导学设计 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 八年级上册等腰三角形的轴对称性 3 导学设计 教学目标 1探索并掌握直角三角形的一个性质定理:直角三角形斜边上的中线等于斜边的一半; 2经历 “ 折纸、画图、观察、归纳 ” 的活动过程,发展学生的空间观念和抽象、概括能力,不断积累数学活动的经验; 3在交流过程中,引导学生体会推理的思考方法,进一步提高说理、分析、猜想和归纳的能力; 4.引导学生理解 合情推理和演绎推理都是获得数学结论的重要途径,进一步体会证明的必要性 教学重点 探索并能应用 “ 直角三角形斜边上的中线等于斜边的一半 ” 解决相关数学问题 教学难点 引导学生用 “ 分析法 ” 证明 “ 直角三角形斜边上的中线等于斜边的一半 ” 教学过程(教师) 2 / 18 学生活动 设计思路 情境创设 提问: 1等腰三角形有哪些性质? 2怎样判定一个三角形是等腰三角形? 学生回顾: 1 等腰三角形的性质:等边对等角;等腰三角形底边上的高线、中线及顶角平分线重合 2判定一个三角形是等腰三角形的方法: ( 1)根据定义,证明三角形有两边相等; ( 2)根据 “ 等角对等边 ” ,只要证明一个三角形有两个角相 等 复习回顾等腰三角形的性质及判定方法,为下面解决问题作铺垫,同时也明确无论是证明线段相等还是折出等腰三角形,都只要证(寻)得相等的角即可 应用反馈 根据你所掌握的方法独立解决下列问题: 1已知:如图 , EAc 是 ABc 的外角, AD 平分 EAc ,3 / 18 ADBc 求证: AB Ac 思考:( 1)上图中,如果 AB Ac, ADBc ,那么 AD 平分 EAc 吗?试证明你的结论 ( 2)上图中,如果 AB Ac, AD 平分 EAc ,那么 ADBc吗? 通过这一系列问题的解决,你有什么发现? 学生独立思考分析,代表发言 解: ABc 是等腰三角形 ADBc , EAD B , DAc c 4 / 18 EAD DAc , B c AB Ac(等角对等边) 学生板演 ADBc , EAD B , DAc c AB Ac, B c (等边对等角) EAD DAc AD 平分 EAc 学生交流想法,代表发言 归纳结论: AB Ac; AD 平分 EAc ; ADBc 三个论断中,其中任意两个成立,第三个一定也成立 对等腰三角形的判定方法的直接应用,同时也为下面折5 / 18 纸活动作铺垫 “ 思考 ” 两题是第 1 题的变式,同时也是 “ 等边对等角 ” 性质的应用 培养学生积极思考,举一反三的思维习惯,也培养学生的归纳概括能力 活动一:操作 探索 1提问:你能用折纸的方法将一个直角三角形分成两个等腰三角形吗? 2提问: AcD 与 BcD 为什么是等腰三角形?请说明6 / 18 理由 3提问:观察图形,你还有哪些发现? 学生思考,操作,小组内交流 1学生代表发言,说明折纸的方法,指出 AcD 与 BcD是等腰三角形; 图( 3) 图( 2) 2在学生代表带领下操作,将剪出的直 角三角形纸片,分别按图( 2)( 3)折叠,标出点 D,连接 cD 3观察图形,小组内交流自己的发现,代表发言 有 4 个直角三角形全等; BD cD AD; 7 / 18 激发学生的学习兴趣,也明确操作活动的目的,为在折纸过程中发现直角三角形的性质作铺垫 通过折纸,让学生亲历操作 观察 发现 归纳的过程,体验 “ 做数学 ” ,发展空间观念,提高动手能力 设计这个活动的目的是通过观察线段 cD 把直角三角形ABc 分成的 2 个三角形 ,进一步获得直角三角形与斜边的关系实质是从中引导学生不断地学会从多个角度观察、认识图形,主动地发现和获得新的数学结论,不断地积累数学活动经验 相互讨论使学生主动参与到学习活动中来,提高学生的观察分析能力,培养学生善于思考的良好习惯,同时也培养学生合作交流精神和发散思维能力 . 活动二:探索 说理 1提问 ( 1) D 是斜边 AB 的中点吗? ( 2)斜边 AB 上的中线 cD 与斜边 AB 有何数量关系? 2刚才我们通过折纸活动发现 “ 直角三角形斜边上的中线等于斜 边的一半 ” ,你能说明理由吗? ( 1)你能根据题中的已知条件和要说明的结论画出图形来表示吗? ( 2)思考:怎样说明 cD AB? 分析: 8 / 18 在折纸活动中,你怎样找出斜边上的中线? 假设已知 cD AB,那么我们可以得出怎样的结论?这对于你说明结论有启发吗? 3小结 ( 1)定理: “ 直角三角形斜边上的中线等于斜边的一半 ” ,并用符号语言表述; ( 2)证明中常用的一种思 考方法:即分析法从需要证明的结论出发,逆推出要使结论成立所需要的条件,再把这样的 “ 条件 ” 看作 “ 结论 ” ,一步一步逆推,直至归结为已知条件 4尝试练习 ( 1) RtABc 中,如果斜边 AB 为 4cm,那么斜边上的中线 cD _cm ( 2)如图,在 RtABc 中, cD 是斜边 AB 上的中线,DEAc ,垂足为 E 如果 cD,那么 AB cm 9 / 18 写出图中相等的线段和角 ( 3)在 RtABc 中, A cB 90 , cA cB,如果斜边 AB 5cm,那么斜边上的高 cD cm 1在刚才讨论交流的基础上,学生回答,得出结论: “ 直角三角形斜边上的中线等于斜边的一半 ” 2.( 1)画出 RtABc , AcB 90 , cD 为斜边上的中线 10 / 18 ( 2)首先独立思考,尝试证明,再小组讨论交流,代表发言,说明如何想到证明思路的? 通过折叠,使 BcD B ,从而确定斜边 AB 的中点D,并发现结论,所以说理时也可以在 AcB 内作 B BcD ,在证明 cD 是斜边上的中线时也能证明结论; 如果 cD AB,那么 cD BD AD, A AcD , B BcD ,那么首先需作 cD 使 A AcD 或 B BcD ,再证 cD 为斜边 AB 上的中线,且 cD BD AD 即可; 阅读课本 3学生口答,板书 在 ABc 中, AcB 90 , 点 D 是 AB 的中点, cD AB 11 / 18 4学生口答,并说明理由 ( 1)根据 “ 直角三角形斜边上的中线等于斜边的一半 ” , cD AB 2cm ( 2) 根据 “ 直角三角形斜边上的中线等于斜边的一半 ” , AB 2cD cD BD AD, cE AE, A AcD , B BcD , AcB DEA DEc 90 ( 3)因为 cA cB, cDAB ,根据 “ 等腰三角形底 边上的高线、中线及顶角平分线重合 ” 得 AD BD,又因为 AcB 90 ,根据 “ 直角三角形斜边上的中线等于斜边的一半 ”得 cD AB 在相互交流的过程中,培养学生的归纳概括能力 巩固证明文字命题的一般步骤 12 / 18 引导学生进行严格的证明,使学生进一步体会证明的必要性 提供学生充分讨论和交流的机会,鼓励学生进行不同证明思路的交流和讨论 引导学生回顾折纸过程,从而明确像折叠那样使 BcD B ,就能逐步 证得结论,目的是使学生感受合情推理有助于发现证明思路和方法 让学生了解 “ 分析法 ” ,逐步学会自己进行分析寻找解题思路 展现学生的思路,并通过讨论,引导学生体会推理的思考方法,并由学生自己逐步完善证明的思路使学生认识将探索和证明有机的结合起来和演绎推理都是人们正确的认识事物的重要途径同时,培养学生 “ 言之有理,落笔有据 ”的习惯 回归教材,阅读课本,培养学生的阅读理解能力 13 / 18 通过尝试练习,及时巩固定理的应用 ( 1)已知斜边上的中线长,应用定理求出斜边长 ( 2)综合应用等腰三角形 “ 三线合一 ” 的性质和 “ 直角三角形斜边上的中线等于斜边的一半 ” 学生回答时,要求他们说明理由,及时巩固等腰三角形的性质和直角三角形的这一性质,同时也锻炼学生有条理的表达能力 例题讲解 1如图, RtABc , AcB 90 ,如果 A 30 ,那么 Bc 与 AB 有怎样的数量关系? 试证明你的结论 提问引导: ( 1)对于 Bc 与 AB 的数量关系,你有何猜想?你为什么作这样的猜想? ( 2)我们猜想 Bc AB,根据我们学过的知识,什么与AB 相等?这对于你证明结论有启发吗? ( 3)指导学生完成证明过程(投影) 14 / 18 2已知:如图,点 c 为线段 AB 的中点, AmB ANB 90.cm 与 cN 是否相等?为什么? 指导学生完成证明过程,对板演点评 1独立思考,尝试用分析法推理证明思路 学生口答,说明自己的思考过程 ( 1)猜想: Bc AB; ( 2)联想: “ 直角三角形斜边上的中线等于斜边的一15 / 18 半 ” ,也有 AB,作斜边上的中线 cD,则 cD BD,如果结论成立,则 BcD 为等边三角形, B 60 ,由已知条件易得; ( 3)书写证明过程 解: Bc AB 作斜边上的中线 cD, AcB 90 , A 30 , B 60 AcB 90 , cD 是斜边上的中线, cD AB BD(直角三角形斜边上的中线等于斜边的一半) BcD 是等边三角形(有一个角是 60 的等腰三角形是等边三角形) Bc cD AB 2独立思考,完成证明过程,学生板演 解: cm cN 点 c 为线段 AB 的中点, AmB ANB 90 , cm AB, cN AB(直角三角形斜边上的中线等于斜边的一半) cm cN 学生猜想后追问为什么这样猜想,引导学生认识到可以16 / 18 通过度量或叠合等操作获得线段(或角)之间的数量关系的感性认识,以便作出合理猜想 . 引导学生采用分析法推理证明思路 . 师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力 . 指导学生进一步规范证明的书写格式 . 17 / 18 第 2 题也是巩固 “ 直角三角形斜边上的中线等于斜边的一半 ” 这一性质的应用 . 指导学生活动 完成练习: 1课本 P66 练习 2 2如图,在四边形 ABcD 中, ABc ADc 90 , m、 N 分别是 Ac、 BD 的中点,试说明: ( 1) mD mB;( 2) mNBD 课本练习第 2 题是角平分线、等腰三角形性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论