初二数学上册第十一章三角形教案_第1页
初二数学上册第十一章三角形教案_第2页
初二数学上册第十一章三角形教案_第3页
初二数学上册第十一章三角形教案_第4页
初二数学上册第十一章三角形教案_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 32 初二数学上册第十一章三角形教案 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 第十一章三角形 教材内容 本章主要内容有三角形的有关线段、角,多边形及内角和。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于 1800 的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形 的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用 . 教学目标 知识与技能 1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线; 2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于 1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。 2 / 32 过程与方法 1、在观察、操作、推理、归纳等探索过 程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。 情感、态度与价值观 1、体会数学与现实生活的联系,增强克服困难的勇气和信心; 2、会应用数学知识解决一些简单的实际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 重点难点 三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于 1800 的证明,根据三条线段的长 度判断它们能否构成三角形及简单的平页镶嵌设计是难点。 课时分配 与三角形有关的线段 2 课时 与三角形有关的角 2 课时 多边形及其内角和 2 课时 3 / 32 本章小结 2 课时 三角形的边 教学目标 1、了解三角形的意义 ,认识三角形的边、内角、顶点,能用符号语言表示三角形; 2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形 ,并能运用它解决有关的问题 . 重点难点 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。 教学过程 一、情景导入 三角形是一种最常见的几何图形, 投影 1-6如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。 那么什么叫做三角形呢? 二、三角形及有关概念 不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。 注意:三条线段必须 不在一条直线上, 首尾顺次相接。 组成三角形的线段叫做三角形的边,相邻两边所组成的4 / 32 角叫做 三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。 三角形 ABc 用符号表示为 ABc 。三角形 ABc 的顶点 c 所对的边 AB 可用 c 表示 ,顶点 B 所对的边 Ac 可用 b 表示 ,顶点 A所对的边 Bc可用 a 表示 . 三、三角形三边的不等关系 探究: 投影 7任意画一个 ABc, 假设有一只小虫要从 B 点出发 ,沿三角形的边爬到 c,它有几种路线可以选择 ?各条路线的长一样吗 ?为什么? 有两条路线:( 1)从 Bc ,( 2)从 BAc ;不一样, AB+Ac Bc ;因为两点之间线段最短。 同样地有 Ac+Bc AB AB+Bc Ac 由式子 我们可以知道什么? 三角形的任意两边之和大于第三边 . 四、三角形的分类 我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。 按角分类 : 三角形直角三角形 斜三角形锐角三角形 钝角三角形 5 / 32 那么三角形按边如何进行分类呢?请你按 “ 有几条边相等 ” 将三角形分类。 三边都相等的三角形叫做等边三角形; 有两条边相等的三角形叫做等腰三角形; 三边都不相等的三角形叫做不等边三角形。 显然,等边三角形是特殊的等腰三角形。 按边分类 : 三角形不等边三角形 等腰三角形底和腰不等的等腰三角形 等边三角形 五、例题 例用一条长为 18 的细绳围成一个等腰三角形。( 1)如果腰长是底边的 2 倍,那么各边的长是多少?( 2)能围成有一边长为 4 的等腰三角形吗?为什么? 分析:( 1)等腰三角形三边的长是多少?若设底边长为 x ,则腰长是多少?( 2) “ 边长为 4 ” 是什么意思? 解:( 1)设底边长为 x ,则腰长 2x。 x+2x+2x=18 解得 x= 所以,三边长分别为, . ( 2)如果长为 4 的边为底边,设腰长为 x ,则 6 / 32 4+2x=18 解得 x=7 如果长为 4 的边为腰,设底边长为 x ,则 24+x=18 解得 x=10 因为 4+4 10,出现两边的和小于第三边的情况,所以不能围成腰长是 4 的等腰三角形。 由以上讨论可知,可以围成底边长是 4 的等腰三角形。 五、课堂练习 课本第 4 页练习 1、 2 题。课本第 8 页 1、 2、 6 题 六、课堂小结 1、三角形及有关概念; 2、三角形的分类; 3、三角形三边的不等关系及应用。 作业: 课本第 8 页习题第 7 题。 三角形的高、中线与角平分线 教学目标 1、经历画图的过程,认识三角形的高、中线与角平分线; 2、会画三角形的高、中线与角平分线; 3、了解三角形的三条高所在的直线 ,三条中线 ,三条角平分线分别交于一点 . 7 / 32 重点难点三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点 . 教学过程 一、导入新课 我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。 二、三角形的高 请你在图中画出 ABc 的一条高并说说你画法。 从 ABc 的顶点 A 向它所对的边 Bc 所在的直线画垂线,垂足为 D,所得线段 AD叫做 ABc 的边 Bc上的高,表示为 ADBc于点 D。 注意:高与垂线不同,高是线段,垂线是直线。 请你再画出这个三角形 AB、 Ac边上的高,看看有什么发现? 三角形的三条高相交于一点。 如果 ABc 是直角三角形、钝角三角形,上页的结论还成立吗? 现在我们来画钝角三角形三边上的高,如图。 显然,上页的结论成立。 请你画一个直角三角形,再画出它三边上的高。 上页的结论还成立。 三、三角形的中线 8 / 32 如图,我们把连结 ABc 的顶点 A 和它的对边 Bc 的中点 D,所得线段 AD 叫做 ABc 的边 Bc 上的中线,表示为 BD=Dc 或BD=Dc 1/2Bc 或 2BD=2Dc=Bc. 请你在图中画出 ABc 的另两条边上的中线,看看有什么发现? 三角的三条中线相交于一点。 如果三角形是直角三角形、钝角三角形,上页的结论还成立吗?请画图回答。 上页的结论还成立。 四、三角形的角平分线 如图,画 A 的平分线 AD,交 A 所对的边 Bc于点 D,所得线段 AD 叫做 ABc 的角平分线 ,表示为 BAD=cAD 或BAD=cAD 1/2BAc 或 2BAD=2cAD BAc 。 思 考:三角形的角平分线与角的平分线是一样的吗? 三角形的角平分线是线段,而角的平分线是射线,是不一样的。 请你在图中再画出另两个角的平分线,看看有什么发现? 三角形三个角的平分线相交于一点。 如果三角形是直角三角形、钝角三角形,上页的结论还成立吗?请画图回答。 上页的结论还成立。 想一想:三角形的三条高、三条中线、三条角平分线的交点9 / 32 有什么不同? 三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高 的交点在三角形的外部。 五、课堂练习 课本第 5 页练习 1、 2 题。 六、课堂小结 1、三角形的高、中线、角平分线的概念和画法。 2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。 作业: 课本第 8 页习题第 4 题,第 9 页第 9 题。 三角形的稳定性 教学目标 1、知道三角形具有稳定性,四边形没有稳定性; 2、了解三角形的稳定性在生产、生活中的应用。 重点难点 三角形稳定性及应用。 教学过程 一、情景导入 盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为 什么要这样做呢? 二、三角形的稳定性 10 / 32 实验 1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗? 不会改变。 2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? 会改变。 3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗? 不会改变。 从上页的实验中,你能得出什么结论? 三角形具有稳定性,而四边形不具有稳定性。 三、三角形稳定性和四边形不稳定的应用 三角形具有稳定性固然好,四边形不具有稳定 性也未必不好,它们在生产和生活中都有广泛的应用。如: 钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。 你还能举出一些例子吗? 四、课堂练习 1、下列图形中具有稳定性的是() 11 / 32 A 正方形 B 长方形 c 直角三角形 D 平行四边形 2、要使下列木架稳定各至少需要多少根木棍? 3、课本第 7 页练习。 作业:课本第 8 页习题第 5 题。 三角形的内角 教学目标 掌握三角形内角和定理。 重点难点 三角形内角和定理是重点;三角形内角和定理的证明是 难点。 教学过程 一、导入新课 我们在小学就知道三角形内角和等于 1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢? 二、三角形内角和的证明 回顾我们小学做过的实验,你是怎样操作的? 把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出 BcD 的度数,可得到 A+B+AcB=1800 。 投影 1 图 1 12 / 32 想一想,还可以怎样拼? 剪下 A ,按图( 2)拼在一起,可得到 A+B+AcB=1800 。 图 2 把和剪下按图( 3)拼在一起, 可得到 A+B+AcB=1800 。 如果把上页移动的角在图上进行转移,由图 1 你能想到证明三角形内角和等于 1800的方法吗? 已知 ABc ,求证: A+B+c=1800 。 证明一 过点 c 作 cmAB ,则 A=Acm , B=Dcm , 又 AcB+Acm+Dcm=1800 A+B+AcB=1800 。 即:三角形的内角和等于 1800。 三角形内角和定理三角形三个内角的和等于 由图 2、图 3 你又能想到什么证明方法?请说说证明过程。 三、例题 例如图, c 岛在 A 岛的北偏东 500 方向, B 岛在 A 岛的北偏东 800方向, c 岛在 B 岛的北偏西 400方向,从 c 岛看 A、 B两岛的视角 AcB 是多少度? 分析:怎样能求出 AcB 的度数? 13 / 32 根据三角形内角和定理,只需求出 AB和 cBA 的度数即可。 cAB 等于多少度?怎样求 cBA 的度数? 解: cBA=BAD -cAD=800 -500=300 ADBEBAD+ABE=1800 ABE=1800 -BAD=1800 -800=1000 ABc=ABE -EBc=1000 -400=600 AcB=1800 -ABc -cAB=1800 -600-300=900 答:从 c 岛看 AB两岛的视角 AcB=1800 是。 在直角三角形 ABc 中, c 900 由三角形内角和定理,得A+B+c=1800 , 所以 A+B 900 三角形内角和定理的推论:直角三角形的两个锐角互余。 四、课堂练习 课本 13页 1、 2 题。 作业: 课本 16页习题第 3、 4。 第十一章复习一() 一、双基回顾 1、三角形:由的三条直线所组成的图形,叫做三角形。 1图中有个三角形,用符号表示为。 14 / 32 2、三角形的分类:( 1)按角分类: 三角形 ( 2)按边分类 : 三角形 2三角形中最大的角是 700,那么这个三角形是三角形。 3、三角形三角的关系:三角形三个内角的和是。 4、三角形的三边关系:三角形的两边之和第三边,两边之差第三边。 3一个三角形的两边长分别是 3 和 8,则第三边的范围是 . 5、三角形的高、中线、角平分线 从三角形的向它的作垂线,顶点和垂足之间的线段叫做三角形的高 注意:三角形的高与垂线不同;三角形的高可能在三角形内部,可能在三角形的边上,可能在三角形的外部 。新课标第一网 在三角形中 ,连接与它的线段,叫做三角形的中线 . 在三角形中,一个内角的角平分线与它的对边相交,与之间的线段 ,叫做三角形的角平分线。 注意:三角形的角平分线与角的平分线不同 . 4如图,以 AE为高的三角形是 . 15 / 32 6、三角形的三条高所在的直线相交于一点。这点可能在三角形的,可能在三角形的,可能在三角形的。 三角形的三条中线相交于一点。这点在三角形的 . 三角形的三条角平分线相交于一点。这点在三角形的。 5如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 A.锐角三角形 B.直角三角形 c.钝角三角形 D.锐角三角形 7、三角形的稳定性:具有稳定性,具有不稳定性 . 6有些窗户是可以向外推开的,当我们把窗户推开后,就顺手把风钩勾上,为什么这样做呢?我们的校门是铁栅栏,为什么既能拉开,又能推拢去呢? 二、例题导引 例 1 两根木棒长分别为 3 厘米和 6 厘米,要截取其中一根木棒将它钉成一个三角形,如果要求三边长为整数,那么截取的情况有几种? 例 2 如图,已知 AD、 AE分别是 ABc 的高和中线, AB=6厘米, Ac=8厘米, Bc 10厘米, cAB= 900,试求( 1) AD的长;( 2) ABE 的页积;( 3) AcE 与 ABE 的周长的差。 例 3 如图, BE平分 ABc,cD 平分 AcB , A 500,求Boc 的度数。 三、练习升华 16 / 32 夯实基础 1、有下列长度的三条线段 ,能组成三角形的是 () ¬、 2、 2、 3、 3、 6 2、如图,工人师傅把新做好的门框上方钉两根木条后存放起来,这是防止,根据是 . 2 题 3 题 4 题 3、图中共有个三角形。 4、如图, ABBD 于 B,DcAc 于 c,Ac 与 BD 交于点 E,那么ADE 的边 DE 上的高为, AE上的高为 . 5、下列说法正确的是 A、直角三角形只有一条高 B、三角形的三条中线相交于一点 c、三角形的三条高相交于一点 D、三角形的角平分线是射线 6、如果三角形的三个内角的度数比是 2:3:4,则它是 () A.锐角三角形 B.钝角三角形 c.直角三角形 D.钝角或直角三角形 7、现有两根木棒 ,它们的长度分别为 20cm 和 30cm,若不改变木棒的长度 ,要钉成一个三角形木架 ,应在下列四根木棒中选取的木棒 ¬ ¬ 17 / 32 8、在 ABc 中 ,AB=Ac,AD是中线 ,ABc 的周长为 34cm,ABD的周长为 30cm,求 AD的长 . 9、在 ABc 中 ,高 cE,角平分线 BD交于点 o,EcB=50, 求Boc 的度数 . 能力提高 10、在 ABc 中 ,若 A+B=c, 则此三角形为 _三角形 . 11、任何一个三角形的三个角中至少有 A、一个锐角 B、两个锐角 c、一个直角 D、一个钝角 12、已知等腰三角形的两边长分别为 3 和 6,则它的周长为 ¬或 15 13、若等腰三角形的腰长为 6,则它的底边长 a 的取值范围是 _;若等腰三角形的底边长为 4,则它的腰长 b 的取值范围是 _. 14、在 ABc 中 ,AD是 Bc上的中线 ,且 SAcD=12,SABc . 15、在 ABc 中 ,AB=Ac,Ac 边上的中线 BD把 ABc 的周长分成 15和 6 两部分,求这个三角形的腰长及底边长。 16、如图, ABc 中 ,AD、 AE分别是 ABc 的高和角平分线,c 600, B 280,求 DAE 的度数。 18 / 32 探究创新 17、如图,线段、相交于点,能否确定与的大小,并加以说明 三角形的外角 教学目标 1、理解 三角形的外角; 2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。 重点难点 三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。 教学过程 一、导入新课 投影 1如图, ABc 的三个内角是什么?它们有什么关系? 是 A 、 B 、 c ,它们的和是 1800。 若延长 Bc 至 D,则 AcD 是什么角?这个角与 ABc 的三个内角有什么关系? 二、三角形外角的概念 AcD 叫做 ABc 的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。 想一想, 三角形的外角共有几个? 共有六个。 注意:每个顶点处有两个外角,它们是对顶角。研究与三角19 / 32 形外角有关的问题时,通常每个顶点处取一个外角 . 三、三角形外角的性质 容易知道,三角形的外角 AcD 与相邻的内角 AcB 是邻补角,那与另外两个角有怎样的数量关系呢? 投影 2如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明 AcD 与 A 、 B 的关系吗? cEAB , A=1 , B=2 又 AcD=1+2 AcD=A+B 你能用文字语言叙述这个结论吗? 三 角形的一个外角等于与它不相邻的两个内角之和。 四、例题 投影 3例如图, 1 、 2 、 3 是三角形 ABc 的三个外角,它们的和是多少? 分析: 1 与 BAc 、 2 与 ABc 、 3 与 AcB 有什么关系? BAc 、 ABc、 AcB 有什么关系? 解: 1+BAc=1800 , 2+ABc=1800 , 3+AcB=1800 , 1+BAc+2+ABc+3+AcB=5400 又 BAc+ABc+AcB=1800 1+2+3=3600 。 你能用语言叙述本例的结论吗? 20 / 32 三角形外角的和等于 3600。 五、课堂练习 课本 15页练习; 六、课堂小结 1、什么是三角形外角? 2、三角形的外角有哪些性质? 作业: 课本 17页习题第 8、 9 题。 1 多边形 教学目标 1、了解多边形及有关概念,理解正多边形的概念 2、区别凸多边形与凹多边形 重点难点 多边形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。 教学过程 一、情景导入 投影 1看下页的图片,你能从中找出由一些线段围成的图形吗? 二、多边形及有关概念 这些图形有什么特点? 由几条线段组成;它们不在同一条直线上;首尾顺次相接 这种在平页内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。 21 / 32 多边形按组成它的线段的条数分成三角形、四边形、五边形 、 n 边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。 与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的 A 、 B 、 c 、 D 、 E 。多边形的边与它的邻边的延长线组成的角叫做多边形的外角如图中的 1是五边形 ABcDE的一个外角。 投影 2 连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线 四边形有几条对角线?五边形有几条对角线?画图看看。 你能猜想 n 边形有多少条对角线吗?说说你的想法。 n 边形有 1/2n( n 3)条对角线。因为从 n 边形的一个顶点可以引 n 3 条对角线, n 个顶点共引 n( n 3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以, n边形有 1/2n( n 3)条对角线。 三、凸多边形和凹多边形 投影 3如图,下页的两个多边形有什么不同? 在图( 1)中,画出四边形 ABcD的任何一条边所在的直线,整个图形都 在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图( 2)就不满足上述22 / 32 凸多边形的特征,因为我们画 BD 所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。 注意:今后我们讨论的多边形指的都是凸多边形 四、正多边形的概念 我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。 投影 4下页是正多边形的一些例子。 五、课堂练习 课本 81页练习 1。 2、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗? 六、课堂小结 1、多边形及有关概念。 2、区别凸多边形和凹多边形。 3、正多边形的概念。 4、 n 边形对角线有条。 作业: 课本 21页练习 1, 2。 2 多边形的内角和 23 / 32 教学目标 1、了解多边形的内角、外角等概念; 2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算 重点难点 多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推导是难点。 教学过程 一、复习导入 我们已经证明了三角 形的内角和为 180 ,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360 ,现在你能利用三角形的内角和定理证明吗? 二、多边形的内角和 投影 1如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? 可以引一条对角线;它将四边形分成两个三角形;因此,四边 形 的 内 角 和 =ABD 的内角和 +BDc 的内角和=2180=360 。 类似地,你能知道五边形、六边形 n 边形的内角和是多少度吗? 投影 2观察下页的图形,填空: 24 / 32 五边形六边形 从五边形一个顶点出发可以引对角线,它们将五边形分成三角形,五边形的内角和等于; 从六边形一个顶点出发可以引对角线,它们将六边形分成三角形,六边形的内角和等于; 投影 3从 n 边形一个顶点出发,可以引对角线,它们将n 边形分成三角形, n 边形的内角和等于。 n 边形的内角和等于( n 一 2) 180 从上页的讨论我们知道,求 n 边形的内角和可以将 n 边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗? 分法一投影 3如图 1,在五边形 ABcDE 内任取一点 o,连结 oA、 oB、 oc、 oD、 oE,则得五个三角形。 五边形的内角和为 5180 一 2180 ( 5 2)180=540 。 图 1 图 2 分法二投影 4如图 2,在边 AB上取一点 o,连 oE、 oD、oc,则可以( 5 1)个三角形。 五边形的内角和为( 5 1) 180 一 180 ( 5 2)180 如果把五边形换成 n 边形,用同样的方法可以得到 n 边形内25 / 32 角和( n 一 2) 180 三、例题 投影 6例 1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 如图,已知四边形 ABcD中, A c 180 ,求 B 与 D的关系 分析: A 、 B 、 c 、 D 有什么关系? 解: A+B+c+D= ( 4 2) 180=360 又 A c 180 B D=360 ( A c ) =180 这就是说,如果四边形一组对角互补,那么另一组对角也互补 投影 7例 2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少? 如图,已知 1 , 2 , 3 , 4 , 5 , 6 分别为六边形ABcDEF 的外角,求 1+2+3+4+5 +6 的值 分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度? 解: 1+BAF=1802+ABc=1803+BAD=180 26 / 32 4+cDE=1805+DEF=1806+EFA=180 1+BAF+2+ABc+3+BAD+4+cDE+5+DEF+6+EFA=6180 又 1+2+3+4+5+6=4180 BAF+ABc+BAD+cDE+DEF+EFA=6180 -4180 =360 这就是说,六边形形的外角和为 360 。 如果把六边形换成 n 边形可以得到同样的结果: n 边形的外角和等于 360 。 对此,我们也可以这样来理解。投影 8如图,从多边形的一个顶点 A 出发,沿多边形各边走过各顶点,再回到 A 点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于 360 四、课堂练习 课本 24页练习 1、 2、 3 题。 五、课堂小结 n 边形的内角和是多少度? n 边形的外角和是多少度? 作业: 25页习题第 4、 5、 6、题。 27 / 32 第十一章复习二() 一、双基回顾 1、三角形的外角:三角形与另组成的角叫做三角形的外角 .如图 1, 是 ABc 的一个外角 . 图 1 图 2 2、三角形外角的性质 (1)三角形的一个外角等于两个内角和 . 注意:三角形的外角和等于 3600. 1如图 2, 450,则 x=. (2)三角形的一个外角与它不相邻的任何一个内角 . 2如图, ABc 中, 1 与 A 有什么关系?为什么? 3、多边形和正多边形 在平页内,由相接组成的 图形叫做多边形。 注意:多边形分为凸多边形和凹多边形,我们现在只研究凸多边形 . 各相等,各相等的多边形叫做正多边形。 4、对角线 连接多边形线段叫做对角线。 3从九边形的一个顶点作对角线,能作条,可把九边形分成个三角形。 28 / 32 5、多边形的内角和、外角和 n 边形的内角和是; n 边形的外角和是 . 4一个多边形的内角和等于它的外角和,这个多边形是边形。 6、平页镶嵌 能单独镶嵌的图形有。 5正五边形不能单独镶嵌的原因是什么? 用多种正多边形镶嵌必须满足条件:几种多边形在的内角的和为 . 6某公园便道用三种不同的正多边形地砖镶嵌,已选好了正十二边形和正方形两种,还需选用 . 二、例题导引 例 1( 1)已知正多边形的一个内角是 150 ,求这个多边形对角线的条数? ( 2) n 边形的边数每增加 1 条,其内角和增加多少度? 例 2 如图,一个任意五角星的五个角的和是多少? 例 3 一个零件形状如图所示,按规定BAc=900,B=210,c=200, 检验工人量得 BDc=1300 ,就断定此零件不合格,请运用所学知识说明理由。(运用三种方法) 29 / 32 三、练习提高 夯实基础 1、若 三角形的一个外角小于与它相邻的内角 ,则这个三角形是 () A.直角三角形 B.锐角三角形 c.钝角三角形 D.无法确定 2、如图 ,cAB 的外角为 120,B 为 40, 则 c 的度数是 _. 3、如图 1, ABcD , A=38c=80 ,则 m 为() A、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论