




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形面积的计算三角形与平行四边形的关系教材第9、第10页的内容。1.使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。2.通过动手操作和对图形的观察、比较,发展学生的空间观念,使学生会运用平行四边形的面积计算方法推导出三角形的面积计算公式,培养学生的分析、综合、抽象、概括和解决实际问题的能力。3.通过观察、测量、拼摆等实践活动,培养学生动手操作、分析比较、总结概括以及探究解决实际问题的能力。4.将知识学习与生活实际相结合,使学生感受到学习的乐趣,发展创新思维和求异思维,培养学生积极的情感。1.理解并掌握三角形的面积计算公式。2.会运用平行四边形的面积计算方法推导出三角形的面积计算公式。1.每个学生准备一个底是8厘米、高是5厘米的平行四边形和完全一样的直角三角形、钝角三角形各2个,大小与教材第9页例5中的相同。2.投影仪,剪刀。教师用投影仪出示右图。提问:这是什么图形?(平行四边形)平行四边形的面积是怎样计算的?学生回答。(教师板书:平行四边形的面积=底高)1.引入。(1)请同学们拿出准备好的平行四边形。它的底、高和面积分别是多少?(底是8厘米,高是5厘米,面积是40平方厘米) (2)提问。如果沿着平行四边形的两个钝角的顶点画一条对角线,再沿对角线剪开会怎样?(教师示范,在投影片上作对角线)学生实践:作对角线,然后沿对角线剪开。剪开后得到什么图形?(两个三角形)请同学们比一比两个三角形的形状和大小。(都完全一样)请同学们猜一猜其中一个三角形的面积是多少。(20平方厘米)2.推导三角形的面积计算公式。教师:刚才我们通过剪、猜得出了三角形的面积。而事实上,三角形的面积是可以用公式进行计算的。今天我们的第一个学习目标就是推导三角形的面积计算公式。(1)提问。刚才剪出的三角形是什么三角形?(锐角三角形)这个锐角三角形的面积与原平行四边形的面积是什么关系?(这个锐角三角形的面积是原平行四边形面积的一半)这个锐角三角形的底与原平行四边形的底是什么关系?(相等)这个锐角三角形的高与原平行四边形的高是什么关系?(相等)(2)小结。三角形的面积是与它等底等高的平行四边形面积的一半。(3)总结三角形的面积公式。三角形的面积=底高2S=ah2(4)提问。求三角形的面积为什么要除以2?因为三角形的面积是与它等底等高的平行四边形面积的一半,“底高”求出的是两个完全相同的三角形的面积,必须再除以2才是求一个三角形的面积。3.操作验证。(1)学生操作。教师:请同学们拿出准备好的两个完全相同的直角三角形,试着把它们拼成平行四边形。学生拼图。教师用投影仪演示:两个完全相同的直角三角形拼成平行四边形。师生讨论:一个直角三角形的面积与拼成的平行四边形的面积是什么关系?直角三角形的底和高与拼成的平行四边形的底和高是什么关系?(一个直角三角形的面积是拼成的平行四边形面积的一半,直角三角形的底和高与拼成的平行四边形的底和高分别相等)(2)学生操作。教师:请同学们拿出准备好的两个完全相同的钝角三角形,试着把它们拼成平行四边形。学生拼图。教师用投影仪演示:两个完全相同的钝角三角形拼成平行四边形。师生讨论:一个钝角三角形的面积与拼成的平行四边形是什么关系?钝角三角形的底和高与拼成的平行四边形的底和高是什么关系?(一个钝角三角形的面积是拼成的平行四边形面积的一半,钝角三角形的底和高与拼成的平行四边形的底和高分别相等)4.例题讲述。(1)请同学们试着完成教材第10页的“试一试”。学生练习。教师指名让学生叙述计算过程,师生共同订正。解:交通标识的面积大约是(87)2=28(平方分米)。答:这个交通标识的面积大约是28平方分米。(2)请同学们完成教材第10页的“练一练”中的两道题。学生练习。教师指名让学生说出答案,师生共同订正。1.判断并说明理由。(正确的画“”,错误的画“”)(1)三角形的面积是平行四边形面积的一半。()(2)三角形的高是2分米,底是5分米,面积是10平方分米。()(3)两个三角形可以拼成一个平行四边形。()2.一块三角形的玻璃,量得它的底是12厘米,高是9厘米。求这块玻璃的面积。3.求下面三角形的面积。4.下图中三角形ACD和三角形BCD的面积相等吗?为什么?它们的面积各是多少?(单位:厘米)5.求右图中阴影部分的面积。课堂作业新设计1.(1)如果一个三角形与一个平行四边形等底等高,那么这个三角形的面积才是平行四边形面积的一半。(2)面积是5平方分米。(3)两个完全一样的三角形才可以拼成一个平行四边形。2. 1292=54(平方厘米)3. 6平方厘米12平方厘米24平方分米4.两个三角形的面积相等,因为它们同底等高。面积都是582=20(平方厘米)。5.分析:三角形BCE是等腰直角三角形,所以BE=6厘米。所以AE=AB-BE=10-6=4(厘米)。又因为BC为三角形ACE的高,所以三角形ACE的面积是462=12(平方厘米)。教材习题教材第10页“练一练”1. 1082=40(平方厘米) 2. 852=20(cm2)342=6(dm2)45162=360(m2)三角形面积的计算平行四边形的面积=底高三角形的面积是与它等底等高的平行四边形面积的一半。三角形的面积=底高2S=ah21.创设问题情境,激起了学生的探究欲望,自然而然地引入课题:三角形面积的计算。2.加强学生的动手操作、合作交流。一方面启发学生把三角形转化为已经会计算面积的图形,另一方面引导学生主动探索三角形与所拼成的平行四边形之间有什么样的联系,并通过填表、观察,发现规律,找出面积的计算方法。这样学生在理解的基础上掌握面积的计算公式,印象更加深刻,思维也得到了发展。三角形面积的知识是在学生学习了三角形底和高的认识以及长方形、正方形和平行四边形的面积计算公式后进行的。其探究的过程与方法的基础是割补法、增补法(分割、平移、旋转),以及平行四边形面积推导过程中蕴含的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区店加盟合同范本
- 市场竞争力绩效合同
- 绿化养护管理制度合同
- 铝材批发安装合同范本
- 私人股份协议合同范本
- 餐馆装修采购合同范本
- 农村摆摊卖房合同范本
- 委托图文制作合同范本
- 木板购销合同范本
- 酒店热水合同范本
- 东华临床科研数据管理系统解决方案白皮书
- GB/T 3758-2008卡套式管接头用锥密封焊接接管
- GA/T 1105-2013信息安全技术终端接入控制产品安全技术要求
- 辽宁省丹东市《教师基本素养及教育教学综合能力知识》教师教育
- 2023年全国保密知识竞赛全套复习题库及答案(共460道题)
- (推荐下载)家族性结肠息肉病教学课件
- 水生产企业(自来水公司)安全生产责任制(含安全手册)
- 《材料成型装备及自动化》课程大纲
- 临时用电JSA分析表
- 如何提高护士对患者病情掌握的知晓率
- 议论文阅读训练 (针对初一学生)附答案
评论
0/150
提交评论