机械毕业设计(论文)-高压线除冰机器人设计(全套图纸).doc_第1页
机械毕业设计(论文)-高压线除冰机器人设计(全套图纸).doc_第2页
机械毕业设计(论文)-高压线除冰机器人设计(全套图纸).doc_第3页
机械毕业设计(论文)-高压线除冰机器人设计(全套图纸).doc_第4页
机械毕业设计(论文)-高压线除冰机器人设计(全套图纸).doc_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要 机械式输电线除冰技术是利用传统的工具通过机构运动方式达到输电线除冰的目的。由于机械式输电线除冰技术除冰效率高,操作简单,因此受到很多国家的重视,在国内也引起了极高的重视,尤其是各大院校和科研院所。本文从输电线覆冰原理及其危害综合说明了输电线覆冰对人们生产生活的影响,提出了一种新的输电线除冰解决方案。研发一款新式输电线除冰机。本输电线除冰机主要由4部分组成,行走部分和除冰部分。行走部分主要通过齿轮传动机构实现,除冰部分通过对滚刀具实现除冰。关键词:输电线除冰 机械式 覆冰全套图纸加153893706Abstract Mechanical transmission line de-icing technology is used tools by body movements in traditional means to achieve the purpose of transmission line icing. The mechanical transmission line de-icing deicing technology, high efficiency, easy operation. Therefore, the attention by many countries, high in the country also attracted attention, especially in the major universities and research institutes. The ice on the transmission line theory and the consolidated statement of the transmission line against ice impact on peoples production and life, to provide new transmission line de-icing solutions. Developing a new transmission line de-icing machine. The transmission line de-icing machine mainly consists of 4 parts, Chassis parts and de-icing. Walking through the gear transmission part, achieved by de-icing rolling tool to achieve some de-icing.Key words: Transmission line de-icing; Mechanical; Ice on the line显示对应的拉丁字符的拼音字典朗读显示对应的拉丁字符的拼音字典28目录摘要IAbstractII第1章 绪论11.1输电线覆冰概况11.2输电线覆冰危害及机理31.3国内外相关除冰设备及技术的特点、发展趋势41.4除冰机研究的内容和意义4第2章 方案设计62.1 工作原理62.2 机构的设计方案62.3 主体结构设计9第3章 结构设计123.1 传动零件的设计123.1.1 齿轮机构设计123.1.2 轴的设计173.1.3 轴承校核203.2 除冰机构的设计233.2.1 除冰方式选择233.2.2刀架设计253.2.3 除冰机构电机选择253.3 整机三维装配图26第4章 功能及创新点29总结30参考文献31致谢33第1章 绪论1.1输电线覆冰概况输电线路因受结冰危害通常容易引起严重的断线、杆塔倒塌、大面积停电、限电等事故。对电力系统的安全运行造成了严重威胁,也一直是电力系统研究中急待解决的难点问题。据不完全统计,自上世纪50年代以来,我国输电线路便不断遭受覆冰危害。2003年,由覆冰引起的110500kV输电线路跳闸79次,占总事故的3127%,其中500kV线路跳闸13次;由于覆冰引起110500kV线路非计划停运47次,占总事故的41。24% 。2004年12月至2005年2月,我国华中电网出现大面积冰灾事故,仅湖南省就有700多万人受灾,直接经济损失超过10亿元。2008年1月,南方多个省份遭受了50年一遇的冰雪灾害,华中、华东部分地区出现长时间持续的大强度、大范围低温雨雪冰冻天气, 导致湖南、江西、浙江、安徽、湖北等地的电网发生倒塔、断线、舞动、覆冰闪络等多种灾害, 湖南电网14条500 kV、44条220 kV和121条110 kV线路停运; 江西电网17条500 kV、57条220 kV和168条110 kV线路停运; 浙江电网23条500 kV、21条220 kV和14条110 kV线路停运, “西电东送”大通道江城、宜华500 kV直流线路损坏严重, 河南、重庆、四川等地的电网也受到不同程度的冲击和破坏。部分地区的线路覆冰厚度达到4060mm,远远超出了1520 mm的设计值,如图1-1。贵州500kV骨干网基本瘫痪,华中、华东电网几十条500kV线路倒塔、倒杆、解列和停运,最大电力缺口接近4000万kW。截至2月12日,全国因灾停运线路共35968条,停运变电站1731座, 110500kV线路倒塔8709座,全国13个省份拉闸限电,共有17个省级电网电力供应紧张。全国受灾人口达1亿多,直接经济损失超过1100亿元。图1-1 输电线覆冰情况随着我国经济的高速发展,超高压大容量输电线路越建越多,线路走廊穿越的地理环境更加复杂,如经过大面积的水库、湖泊和崇山峻岭,给线路维护带来很多困难. 而且在严冬及初春季节,我国云贵高原、川陕一带及两湖地区常出现雾凇和雨凇现象,造成架空输电线路覆冰,使线路舞动、闪络、烧伤,甚至断线倒杆,使电网结构遭到破坏,安全运行受到严重威胁.在紧急情况下,寻道员用带电操作杆或其它类似的绝缘棒只能为很少的一部分覆冰线路除冰,人工除冰有很高的危险性1 。在国外,一些国家的地理与气候情况与我国相似,甚至一些国家的情况更加恶劣,为了保证电力系统的可靠性,提高高压输电线除冰的效率,减少损失,维护工人的安全,开发一种可以替代或部分替代工人进行除冰作业的新型设备一直是国内外相关研究的热点. 因此,研制安全有效的除冰机械以代替人进行导线除冰具有较好的应用前景和实用意义。图1-2 铁塔被超过设计承受能力的覆冰载荷压坏图1-3 铁塔被不均匀覆冰纵向不平衡张力拉坏图1-4 铁塔被断线冲击荷载与纵向不平衡张力扭坏图1-5 铁塔因长时间舞动而发生倒塌1.2输电线覆冰危害及机理(1)过荷载。即导线覆冰厚的实际重量超过设计值很多,导致架空输电导线及杆塔载荷过大超出自身机械强度极限最终断线垮塔。如图1-2所示。(2)不同期脱冰或不均匀覆冰事故。相邻档导线不均匀覆冰或不同期脱冰会产生张力差,使导线在线夹内滑动松脱,甚至会因为两侧水平张力差过大而拉垮杆塔;不同期脱冰会使导线跳跃电气间隙减小,造成导线相间短路或直接对地短路事故。如图1-3所示。(3)绝缘子串冰闪事故。绝缘子覆冰或被冰凌桥结后,绝缘强度下降,泄露距离缩短,融冰时,绝缘子的局部表面电阻增加,形成闪络事故导致持续电弧烧伤绝缘子并使其绝缘强度降低。(4)导线覆冰舞动事故。因导线不均匀覆冰,在风的作用下产生舞动,造成金具损坏,导线断股,相间短路及杆塔倾斜或倒塌等严重事故。如图1-5所示。1.3国内外相关除冰设备及技术的特点、发展趋势目前国内和国外的除冰技术可归纳有3 0 余种,总体可分为:1.大电流融冰法:主要包括过电流融冰法、短路电流融冰法和直流电流融冰法。此类方法也是目前工程中普遍采用的方案,在实际运用过程中积累了许多宝贵经验。2.机械除冰法:滑轮刮铲法是目前唯一可行的输电线路除冰的机械方法,其过程是由地面工作人员拉动可以在线路上行走的滑轮达到铲除覆冰的目的。但该方法并不适用于我国西部高海拔、地形复杂地区。3.被动法:被动法就是依靠风、地球引力、随机散射和温度变化等脱冰的被动方法无需附加能量。现已经在输电线路上得到应用的有平衡重量、线夹、除冰环、阻雪环、憎水憎冰涂料、风力锤等来减少输电线路的覆冰,安装防震锤等来减少导线的舞动。被动法有费用低的优点,但不能阻止覆冰的形成,而且仅适用于特定的地区。4.其他方法:除上述几种方法外,还有利用电磁脉冲、气动脉冲、电晕放电、电子冻结、碰撞前颗粒加热和冻结等防冰除冰方法,但很多还处于理想或试验阶段。而最近国内外比较热门的机械除冰法主要通过除冰机器人来完成,目前国内外设计的除冰机器人通常包括3部分:1.爬行机构 2.越障机构 3.除冰机构。并且向着小型化,实用化,可越障,智能化的方向发展。1.4除冰机研究的内容和意义针对目前各类机械式除冰方法的不足之处,本文设想了一种全新的行走平台,并在实践中证明这种理论是可行的。它继承了轮式车辆移动速度快捷的特点,又具有骑挂在电线上的能力,在传动系统设计上采用了齿轮传动设计,结构相对简单,工作可靠。并且在控制方面,具有很好的功能扩展性。作为一种运输平台,具有很广阔的功能开发空间。另外除冰机构也是本次设计的创新点,采用对滚式刀具进行除冰,除冰效果好。本论文主要完成了输电线除冰机的原理设计,方案选择,机构的实现,各部分零件的设计与整机的装配,并在此基础上采用三维制图软件建立实体模型并进行虚拟装配和运动仿真。本课题研究的目的在于根据输电线系统的除冰需要,研制一种简单,实用的输电线除冰机。轮式输电线除冰机是一种用于,在山地,荒野,河流,湖泊等地理环境,不适合人工除冰的输电线路上清冰。它是适用于各种地貌,不会因为环境的改变而停止工作。它的前端是一对用于除冰的对滚刀具,用于清除在电线结的冰。刀具的对滚通过齿轮传动机构完成。轮式除冰机主体部分是行走机构。该设计采用压轮推进方式, 机体上的两个固定压轮骑挂在输电线上保持机体的平衡, 机体的重心位于输电线下方, 这样机体不会在行进过程中出现倒转。两个动压轮分别与两个固定压轮配合, 当推动动压轮时, 动压轮向上抬升, 与固定压轮配合从上下夹紧输电线, 依靠压轮与输电线的摩擦获得前进的动力。该设计的电力驱动分为两个分支: 一部分直接传至除冰机构, 供刀具除冰使用; 另一部分传至动压轮,实现小车的行走。该设计的目的是提供一种体积小,运作灵活,运行稳定的输电线除冰机,也提供一种适于在条件艰苦的环境下工作的电线除冰机器。第2章 方案设计2.1 工作原理本设计采用四轮式结构布局,具有小型轻质,除冰效率高,安装方便,适应环境能力强的特点。工作原理如图21所示,输电线除冰机工作时由行走电机推动机器行走,通过大齿轮带动轴1转动,再通过两个减速齿轮组分别带动轴2和轴3转动,驱动行走轮转动,并带动链轮回转,通过传动链带动行走轮2转动,实现输电线除冰机在电线上行走。工作电机通过一组减速齿轮使轮5转动,驱动工作刀具做回转运动。图2-1 机构运动简图轮式输电线除冰机由电动机提供动力。行走机构通过三级齿轮减速机构实现减速,除冰机构通过一级齿轮减速机构实现减速。轮式输电线除冰机的组成框图,如图22所示。2.2 机构的设计方案能够实现轮式输电线除冰机功能的技术原理很多,但各有利有弊,具体分析如下:1.驱动方式选择1)小型柴油机驱动 柴油机驱动的优点是马力大,适应环境能力强。但重量和所占空间过大,驱动时会产生较大振动,容易引起输电线舞动,不适用于在输电上行走使用,另外对环境会产生污染,不环保。2)电动机驱动 型号较多,选择范围广。在质量和振动方面有着不可替代的优势。对环境无污染,可以满足环护要求。行走电机 减速机构 行走轮 除冰电机 减速机构 除冰刀具 图2-2 轮式输电线除冰车组成框图及运动传递路线2减速方式选择1)带传动 抗拉强度较大,耐湿性好,廉价,可以传送较大功率。但所需空间比较大,不适用于受空间限制要求中心距小以及急速反向传动的场合。 2)链传动 链传动的制造与安装精度要求较低,链轮齿受力情况较好,承载能力较大;有一定的缓冲与减震性能;中心距可大而结构轻便。可以适应恶劣的工作环境。但是同样,所需空间较大,不适用于受空间限制要求中心距小以及急速反向传动的场合。3)齿轮传动 瞬时传动比恒定;传动比范围大,可用于减速或增速;速度和传递功率的范围大,可用于高速(v40m/s)、中速和低速(v25m/s)的传动;功率可从小于1W到105kW;传动效率高,一对高精度的渐开线圆柱齿轮,效率可达99%以上;结构紧凑,适用于近距离传动。4)蜗杆传动 蜗杆传动用于交错轴间传递运动及动力。传动比大,工作较平稳,噪声低,结构紧凑,可以自锁;效率低,易发热,蜗轮制造需要贵重的减摩性有色金属。链传动和带传动虽然适应环境的能力比较强,但是所需传动空间比较大,不适用于在轮式输电线除冰车上使用。蜗杆传动效率低,易发热,环境适应性差。因此,综合考虑各方面因素,减速方式选择通过齿轮传动机构来完成。3.行走方式选择1)履带式 履带式行走机构广泛用于工程机械、拖拉机等野外作业车辆。行走条件相对恶劣,该行走机构具有足够的强度和刚度;具有良好的行进及转向功能。但是履带式行走机构特别笨重,不适于作为输电线除冰车的行走机构。2)轮式 轮式行走机构广泛于汽车、火车、航空等各种交通工具,应用范围极广,可在大多数路况行走,适应能力较强。质量较轻,便于携带、装配、更换。3)液压缸式 在同等功率情况下,液压执行元件体积小、重量轻、结构紧凑。液压传动的各种元件,可根据需要方便、灵活地来布置。液压装置工作比较平稳,由于重量轻、惯性小、反应快,液压装置易于实现快速启动、制动和频繁的换向。液压元件实险了标准化、系列化、通用化,便于设计、制造和使用。但是工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。由于流体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄漏不仅污染场地,而且还可能引起火灾和爆炸事故。由于履带式系统过于笨重,因此不适合在输电线上行走;液压系统过于复杂,也不适合用于输电线除冰机上。因此输电线除冰机的行走机构采用轮式行走机构。为了使轮式行走机构在输电线上行走更加平稳,在行走轮中部开通一个直径为30mm的凹槽。4.除冰方式选择1)加热除冰 通过电阻加热或喷火加热,使覆冰融化,达到清除覆冰的目的。加热除冰方法对环境没有任何污染,清除效率高。但是这个方法耗能过多,不节能。2)化学法除冰 依靠撒布化学药剂固体颗粒或液体使冰雪融化为化学融冰, 其特点是除净率高, 但这种方法成本高, 且容易对环境造成污染, 尤其是钠盐融雪剂对钢筋混凝土结构有破坏作用, 易造成混凝土路面的表层脱落, 使电线质量受损而缩短其使用寿命, 对植被的损害也较严重。3)振动除冰 振动式除冰法, 通过马达带动一具有一定重量的除冰锤上下往复的敲击动作,当敲击到覆冰上时,覆冰由于受到震动,与输电线脱离。达到除冰的目的。此方法除冰效果明显,效率较高,能耗少。但是由于震动会引起电线的舞动,有违除冰的本意。4)对滚铣削除冰 对滚铣削式除冰工作装置安装在输电线除冰机前端, 通过滚压轮上的组合刀片, 依靠较高转速把输电线上的覆冰铣除。此方法工作效率高,清除效果好。加热方法耗能过多,输电线除冰机不能携带过重的能源储存装置,因此加热除冰法不适用。化学法对环境污染大,对输电线腐蚀比较大,不宜采用。振动除冰法容易使输电线产生舞动,违背了清除覆冰的初衷。综合来看,采用对滚铣削除冰法是最佳选择。5.行走轮同步行走方法与减震方法行走轮是推动输电线除冰机行走的主要零件,上端行走轮倒挂在电线上,主要目的是给除冰机提供一个拉力,使除冰机能挂在电线上。下端行走轮通过齿轮与电动机相连,负责推进除冰机行进。为了使输电线除冰机推进更加平稳,将下端两行走轮通过链传动连接在一起,实现下端两行走轮同步。具体结构如图2-3所示。此外,通过对滚刀具除冰机构的电线上可能依然会有小块的覆冰。因此,行走轮还应该具有一定的越障能力。不会让小块覆冰成为行走轮推进除冰机行走的障碍。我们为此设计了一个减震机构。通过减震机构,行走轮可以轻易地越过小块覆冰。具体结构如图2-4。图2-3 通过链传动是行走轮同步图2-4 行走轮减震机构综合考虑:本设计采用电机驱动,齿轮传动减速机构,轮式行走方式,对滚洗刀除冰方式。2.3 主体结构设计1.输电线轮式除冰机上部如图2-5所示,输电线轮式除冰机上部能把小车悬挂在输电线上,提供向上的支撑力。同时,具有一定的越障和减震能力,可以越过没有清理完全的覆冰。前端是除冰机构的一部分,能使其完成除冰工作。2.输电线轮式除冰机下部如图2-6所示,输电线轮式除冰机下部向小车提供向前的推力,推进小车向前行走。前端是除冰机构的一部分,能使其完成除冰工作。同时,通过齿轮机构与上部的除冰机构和下面的电动机相连,实现动力传输。图2-5 输电线轮式除冰机上部图2-6 输电线轮式除冰机下部3.减速器减速器是指原动机和工作机之间的独立传动装置。目前,许多减速器在我国已有国家标准,并在专门工厂批量生产。减速器的种类很多,按传动类型可分为齿轮减速器、蜗杆减速器等,以及由它们相互组合起来的减速器;按齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器及圆锥圆柱齿轮减速器;按传动级数可分为单级减速器和多级减速器;按传动的布置形式可以分为展开式、分流式及同轴式减速器。输电线轮式除冰机的减速器为三级展开式齿轮减速器。如图2-7,每级传动比均是2。为了减轻减速器的重量,把减速器的外壳切除一部分。4.电池组支架电池组支架用于存放电池组,为除冰机构和行走机构提供电能。为了减轻输电线轮式除冰机的重量,支架设计成如图2-8所示。图2-7 输电线除冰机减速器图2-8 输电线除冰机电池组支架第3章 结构设计3.1 传动零件的设计3.1.1 齿轮机构设计1 选定齿轮的类型,精度等级,材料以及齿数1) 按照图21所示的传动方案,因为齿轮受轴向力很小,故选用直齿圆柱齿轮传动,制作比较简单可以降低成本。2) 该输电线轮式除冰机工作时的速度较低,所以选择8级精度(GB10095-88)。3) 材料选择。由轮齿的失效形式可知,设计齿轮时,应该使齿面具有较高的抗磨损、抗点蚀、抗胶合以及抗塑性变形的能力,而齿根要有较高的抗折断的能力。因此,对齿轮的材料性能基本要求为:齿面要硬、齿芯要韧。一般齿轮材料有钢,铸铁,以及非金属材料。齿轮材料的选择原则:齿轮材料必须满足工作的要求;应考虑齿轮尺寸的大小、毛坯成型的方法以及热处理和制造工艺:如正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可以用于制作在中等冲击载荷平稳下工作的齿轮;合金钢常用于制作高速、重载并在冲击载荷下的齿轮;飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢;金属制作的软齿面齿轮,配对两轮齿面的硬度差应保持为3050HBS或更多。由剪草机的工作条件可知对齿轮材料要求不高,而且大尺寸的齿轮一般采用铸造毛坯,因此可选用铸钢或铸铁作为齿轮材料。根据齿轮材料选择的原则以及常用材料的力学特性选择大小齿轮的材料为ZG310-570,采用表面淬火。2 齿轮尺寸设计开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使得轮齿不至于过小,故小齿轮不适宜选用过多的齿数,本设计中选择小齿轮齿数z=15,大齿轮的齿数,取。设计传动比。除冰机正常行走时的速度为大约3m/s。设计除冰机的前后轮直径均为40mm。设想除冰机工作时处于理想状况下即轮子只滚动不滑动。由此可得,后轮轴的转速约为。查机械设计手册得:橡胶轮对输电线滚动摩擦力臂为1015/mm,由于设计要求剪草机质量不大于20Kg,则车轮沿输电线的最大滚动阻力矩为。设计输电线除冰机机工作寿命为8年。3 轴1和轴2上齿轮1和齿轮2的设计基本参数 按齿面接触强度设计由设计计算公式进行计算,即 (3-1)1) 确定公式内各计算数值(1)试选载荷系数(2)小齿轮转矩 注:由机械设计手册查得:圆柱齿轮机械传动7级精度的传动效率为0.98-0.995(3)选取齿宽系数(4)材料的弹性影响系数(5)由齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限(6)计算应力循环次数 (3-2) (3-3)(7)查得接触疲劳寿命系数; (8)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,得 (3-4) (3-5)2)计算(1)计算小齿轮分度圆直径,代入接触疲劳许用应力中的较小值 (3-6)(2)计算圆周速度与齿宽(3)计算齿宽与齿高之比模数 (3-7)齿高 (3-8)(4) 计算载荷系数根据速度,7级精度,查得动载系数;直齿轮,假设查得;使用系数;7级精度小齿轮对称支撑布置,;由,得;故载荷系数2. 按齿根弯曲疲劳强度设计弯曲疲劳强度的设计公式为 (3-9)1) 确定公式内的各计算数值(1)查得小齿轮的弯曲疲劳极限;齿轮的弯曲疲劳极限;(2)查得弯曲疲劳寿命系数;;(3)计算弯曲疲劳许用应力取弯曲疲劳安全系数S=1.4,得 (3-10) (3-11)(4)计算载荷系数(5)查取齿形系数;(6)查取应力校正系数,;(7)计算大、小齿轮的并加以比较得: (3-12) (3-13)大齿轮的数值大。2) 设计计算 (3-14)由上可得,小齿轮的分度圆直径大于42mm,模数大于2.8即可满足齿轮强度要求。考虑到加工难易以及轴的强度故取模数m=3,小齿轮分度圆直径为45mm。3. 几何尺寸计算1) 计算分度圆直径 (3-15) (3-16)2) 计算中心距 (3-17)3) 计算齿轮宽度取 , .4) 计算齿顶圆直径 (3-18) (3-19)5) 计算齿根圆直径 (3-20) (3-21)齿轮结构通常与其几何尺寸,材料及制造工艺有关,一般多采用铸造或者锻造毛坯。为了减轻重量,在大齿轮轮毂打六个通孔;当齿轮根圆直径与该处轴所需直径差值过小时,为避免由于键槽处轮毂过于薄弱而发生失效,应将齿轮与轴加工成一体;由于小齿轮的齿顶圆直径较小,所以可以做成实心结构的齿轮。 图31 小齿轮形状结构图 图33 大齿轮形状结构图3.1.2 轴的设计1 轴的材料选择轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。必须指出:在一般工作温度下(低于200),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。根据轴的常用材料及其主要力学性能,结合此处的实际的情况,所受载荷小而且转速低所以三个轴均选择用45钢(调质)。2 轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构尺寸。轴的结构主要取决于以下因素:轴在机器中的安装位置以及形式;轴上零件的类型,尺寸,数量以及和轴联接的方法;载荷的性质,大小,方向以及分布情况;轴的加工工艺等。由于影响轴的结构因素较多,而且结构形式又要随着具体情况的不同而不同,所以轴没有标准的结构形式。设计时必须针对不同情况进行具体的分析。但是,不论何种具体条件,轴的结构都应该满足:轴和装在轴上的零件要有准确的工作位置;轴上的零件应便于装拆和调整;轴应具有良好的制造工艺性等。轴上零件的轴向定位是以轴肩、套筒、圆螺母、轴端挡圈和轴承端盖等来保证的。轴肩分为定位轴肩和非定位轴肩两类,利用轴肩定位是最方便可靠的方法,但采用轴肩就必然会使轴的直径加大,而且轴肩处将因截面突变而引起应力集中。另外,轴肩过多时也不利于加工。因此,轴肩定位多用于轴向力较大的场合。套筒定位结构简单,定位可靠,轴上不需开槽钻孔和切制螺纹,因而不影响轴的疲劳强度,一般用于轴上两个零件之间的定位。如两零件的间距较大时,不宜采用套筒定位,以免增大套筒的质量及材料用量。因套筒与轴的配合较松,如轴的转速较高时,也不宜采用套筒定位。圆螺母定位可承受大的轴向力,但轴上螺纹处有较大的应力集中,会降低轴的疲劳强度,故一般用于固定轴端的零件,有双圆螺母和圆螺母与止动垫片两种型式。当轴上两零件间距离较大不宜使用套筒定位时,也常采用圆螺母定位。轴承端盖用螺钉或榫槽与箱体联接而使滚动轴承的外圈得到轴向定位。在一般情况下,整个轴的轴向定位也常利用轴承端盖来实现。轴上零件的周向定位的目的是限制轴上零件与轴发生相对转动。常用的周向定位零件有键花键、销紧定螺钉以及过盈配合等,其中紧定螺钉只用在传力不大之处有配合要求的轴段,应尽量采用标准直径。安装标准件(如滚动轴承、联轴器、密封圈等)部位的轴径,应取为相应的标准值及所选配合的公差。为了使齿轮、轴承等有配合要求的零件装拆方便,并减少配合表面的擦伤,在配合轴段前应采用较小的直径。为了使与轴作过盈配合的零件易于装配,相配轴段的压入端应制出锥度;或在同一轴段的两个部位上采用不同的尺寸公差。确定各轴段长度时,应尽可能使结构紧凑,同时还要保证零件所需的装配或调整空间。轴的各段长度主要是根据各零件与轴配合部分的轴向尺寸和相邻零件间必要的空隙来确定的。为了保证轴向定位可靠,与齿轮和联轴器等零件相配合部分的轴段长度一般应比轮毂长度短23mm。结合以上设计准则设计各个轴的结构尺寸如下:(1) 轴的设计1) 求作用在轴上齿轮1的力因为 ,故 (3-22) () (3-23)由此可见,轴所承受的力很小。 (3-24)2) 初步确定轴的最小直径根据机械设计手册查得,取=112,于是得 (3-25)考虑到需要开键槽以及加工工艺,故取。显然,轴的最小直径是安装车轮处,即。3)根据轴向定位的要求确定轴的各段直径和长度为了满足车轮的轴向定位要求,车轮外用M10的螺母定位;内用套筒定位。初步选择滚动轴承。因轴承同时承受的径向和轴向力均很小,故选用深沟球轴承。参照工作要求并根据,参照国家标准GB/T 276-1994,由轴承产品目录中初步选取0组基本游隙组、标准精度级的单列深沟球轴承6004,其尺寸为,由于不需要安装挡油环,所以轴承内用套筒定位,套筒用行走轮定位;外用轴承锥形套筒定位。轴承安装在下车体外壳上,其周向定位是借助过渡配合来保证的,此处选轴的直径尺寸公差为m6。由于轴上零件比较少。所以不需要轴肩。因此设计成长度为130mm的光轴,需要在指定位置开键槽。轴的两端分别有10mm的螺纹。轴上零件的周向定位齿轮、车轮与轴的周向定位均采用平键联接。按由手册查得平键截面(摘自GB/T 1095-2003),键槽用键槽铣刀加工,长为5mm(摘自GB/T 1096-2003)。 同时为了保证齿轮与轴的配合有良好的对中性,故选择齿轮轮毂与轴的配合为H7/n6;同样车轮与与轴的联接,选用B型平键,车轮与轴的配合为H7/k6.由机械设计手册得,M10螺纹倒角为245;M27螺纹倒角为145;各轴肩处的圆角半径取R1。初步确定的轴的结构如图34所示。 图34轴的结构3 提高轴强度的措施(1) 合理布置轴上零件以减小轴的载荷;(2) 改进轴的结构以减小应力集中的影响;轴通常是在变应力条件下工作的,轴的截面尺寸发生突变处要产生应力集中,轴的疲劳破坏往往在此发生。为了提高轴的疲劳强度,应尽量减少应力集中源和降低应力集中程度。为此轴肩处应采用较大的过渡圆角半径r来降低应力集中。但对定位轴肩,还必须保证零件得到可靠的定位。当靠轴肩定位的零件的圆角半径很小时,为了增大轴肩处的圆角半径,可采用内凹圆角或加装隔离环。(3)改进轴上零件的结构以减小轴的载荷;(4)改进轴的表面质量以提高轴的疲劳强度;轴的表面粗糙度和表面强化处理方法也会对轴的疲劳强度产生影响。轴的表面愈粗糙,疲劳强度也愈低。因此,应合理减小轴的表面及圆角处的加工粗糙度值。表面强化处理的方法有:表面高频淬火等热处理;表面渗碳、氰化、氮化等化学热处理;碾压、喷丸等强化处理。通过碾压、喷丸进行表面强化处理时可使轴的表层产生预压应力,从而提高轴的抗疲劳能力。各个轴均采用淬火处理。4 轴的结构工艺性 轴的结构工艺性是指轴的结构形式应便于加工和装配轴上零件,并且生产率高,成本低。一般地说,轴的结构越简单,工艺性越好。因此,在满足使用要求的前提下,轴的结构形式应尽量简化。为了便于装配零件并去掉毛刺,轴端应制出45的倒角;需要磨削加工的轴段,应留有砂轮越程槽;需要切制螺纹的轴段,应留有退刀槽。它们的尺寸可参看标准或手册。为减少加工了减少装夹工件的时间,在同一轴上,不同轴段的键槽应布置(或投影)在轴的同一母线上。为了刀具种类和提高劳动生产率,轴上直径相近的圆角、倒角、键槽宽度、砂轮越程槽宽度和退刀槽宽度等应尽可能采用相同的尺寸。3.1.3 轴承校核滚动轴承是现代机器中广泛应用的零件之一,它是依靠主要元件间的滚动接触来支承转动零件的。常用的滚动轴承绝大多数已经标准化,并由专业工厂大量制造即供应各种规格常用的轴承。滚动轴承的构成:包括:内圈、外圈、滚动体、保持架 内圈用来和轴颈装配,外圈用来和轴承座孔装配。通常是内圈随轴颈回转,外圈固定,但也可以用于外圈回转而内圈不动,或是内、外圈同时回转的场合。当内、外圈相对转动时,滚动体即在内、外圈的滚道内滚动。保持架的作用主要是均匀地隔开滚动体。 滚动体的基本类型有:钢球、圆柱滚子、圆锥滚子、滚针、鼓形滚子、不对称鼓形滚子。 与滑动轴承相比,滚动轴承具有旋转精度高、启动力矩小、是标准件、选用方便等特点。与滑动轴承相比,滚动轴承的优点:1、一般条件下,滚动轴承的效率和液体动力润滑轴承相当,但较混合润滑轴承要高一些;2、径向游隙比较小,向心角接触轴承可用预紧可用预紧力消除游 隙, 运转精度高;3、对于同尺寸的轴径,滚动轴承的宽度比滑动轴承小,可使机器的 轴向结构紧凑;4、大多数滚动轴承能同时受径向和轴向载荷,故轴承组合结构简单;5、消耗润滑剂少,便于密封,易于维护;6、不需要有用有色金属;7、标准化程度高,成批生产,成本低;与滑动轴承相比,滚动轴承的缺点:1、承受冲击载荷能力较差;2、高速重载载荷下轴承寿命较低;3、振动及噪声较大;4、径向尺寸比滑动轴承;能否正确选用滚动轴承,对主机能否获得良好的工作性能,延长使用寿命;对企业能否缩短维修时间,减少维修费用,提高机器的运转率,都有着十分重要的作用。因此,不论是设计制造单位,还是维修使用单位,在选择滚动轴承时都必须高度重视。一般来说,选择轴承的步骤可能概括为:1.根据轴承工作条件(包括载荷方向及载荷类型、转速、润滑方式、同轴度要求、定位或非定位、安装和维修环境、环境温度等),选择轴承基本类型、公差等级和游隙;2.根据轴承的工作条件和受力情况和寿命要求,通过计算确定轴承型号,或根据使用要求,选定轴承型号,再验算寿命;3.验算所选轴承的额定载荷和极限转速。选择轴承的主要考虑因素是极限转速、要求的确良寿命和载荷能力,其它的因素则有助于确定轴承类型、结构、尺寸及公差等级和游隙工求的最终方案。类型选择,各类滚动轴承具有不同的特性,适用于各种机械的不同使用情况。选择轴承类型时,通常应考虑下列因素。一般情况下:对承受推力载荷时选用推力轴承、角接触轴承,对高速应用场合通常使用球轴承,承受重的径向载荷时,则选用滚子轴承。总之,选用人员应从不同生产厂家、众多的轴承产品中,选用合适的类型。轴承所占机械的空间和位置在机械设计中,一般先确定轴的尺寸,然后,根据轴的尺寸选择滚动轴承。通常是小轴选用球轴承,大轴选用滚子轴承。但是,当轴承在机器的直径方向受到限制时,则选用滚针轴承、特轻和超轻系列的球或滚子轴承;当轴承在机器的轴向位置受到限制时,可选用窄的或特窄系列的球或滚子轴承。轴承所受载荷的大小、方向和性质载荷是选用轴承的最主要因素。滚子轴承用于承受较重的载荷,球轴承用于承受较轻的或中等载荷,渗碳钢制造或贝氏体淬火的轴承,可承受冲击与振动载荷。在载荷的作用方向方面,承受纯径向载荷时,可选用深沟球轴承、圆柱滚子轴承或滚针轴承。承受较小的纯轴向载荷时,可选用推力球轴承;承受较大的纯轴向载荷时,可选用推力滚子轴承。当轴承承受径向和轴向联合载荷时,一般选用角接触球轴承或圆锥滚子轴承。对于悬臂支撑结构,常采用圆锥滚子轴承或角接触球轴承,且成对使用。滚动轴承类型选择应注意的问题: 1、考虑轴承的承受载荷情况方向:受径向力时,用向心轴承;受轴向力时,用推力轴承;径向力和周向力联合作用时,用向心推力轴承;大小:受到较大载荷时,可用滚子轴承,或尺寸系列较大的轴承;受到较小载荷时,可用球轴承,或尺寸系列较小的轴承2、考虑对轴承尺寸的限制当对轴承的径向尺寸严格限制时,可选用滚针轴承; 3、考虑轴承的转速一般来讲,球轴承比滚子轴承能适应更高的转速,轻系列的轴承比重系列的轴承能适应更高的转速;此外,各类推力轴承的极限转速很低,不易用于高转速的情况。4、考虑对轴承的调心性要求调心球轴承和调心滚子轴承均能满足一定的调心要求(即:轴心线与轴承座孔心线可适当偏转),而圆柱滚子轴承、圆锥滚子轴承、滚针轴承满足调心要求的能力几乎为零根据各个轴承的特点以及选用原则,可以肯定我们初步选定的型号6004深沟球轴承满足要求。由于轴1所承载的载荷最大,且轴1的转速最大,故轴1上的轴承最危险。若此轴承寿命满足要求,则其它轴承亦可满足要求。所选6004深沟球轴承的基本额定动载荷C为9.38kN假设链传动的效率为0.9。 (3-26) (3-27)显然,轴承寿命满足要求。3.2 除冰机构的设计3.2.1 除冰方式选择1 铣削的方式 即先利用铣刀从覆冰的中间铣出一条裂缝,使覆冰的其它部分裂开,其后的楔形块再对覆冰进行挤压,挤压掉覆冰,完成导线除冰。但是其除冰可行性和除冰效率有待于进一步验证。2 敲击的方式 采用特制冲击头固接于曲柄滑块机构的滑块上,以15Hz 的频率反复敲击覆冰。但其采用敲击方式除冰,容易引起电线共振和输电线舞动。这样违背了我们设计输电线除冰机的初衷。3 加热的方式 通过电阻加热或喷火加热,使覆冰融化,达到清除覆冰的目的。加热除冰方法对环境没有任何污染,清除效率高。但是这个方法耗能过多,不节能。在要求的重量范围内,除冰机不能携带如此大的储能设备。4 对滚除冰的方式 对滚铣削式除冰工作装置安装在输电线除冰机前端, 通过滚压轮上的组合刀片, 依靠较高转速把输电线上的覆冰铣除。此方法工作效率高,清除效果好。综合以上几种方案的优缺点,结合实际设计理念以及实际需求,我们选择设计对滚方式除冰。刀片211-滚刀片 2-滚刀底座图310 滚刀图3-11 除冰机除冰机构的传动装置图311 刀架零件图3.2.2刀架设计1剪切装置剪切装置由3片切削刀具组成。所有切削刀具固定在底刀架上 ,对滚除冰时轴线位置不动 ,刀刃为直线型。滚刀结构如图 310所示 ,滚刀的刀片形状为倾斜平面 ,中部有一方便与输电线接触的弧度。刀刃为直线线 ,三片刀片均匀分布固定在刀架上。除冰时 ,滚刀对滚转动 ,两组滚刀逐片组成剪口 ,覆冰随着滚刀刀片的旋转被切成碎屑 ,并被清除。上下刀刃在除冰过程中始终没有接触。2 对滚刀具传动装置对滚刀具传动装置由图 311中的两对齿轮组成。当电动机带动下车体上除冰机构齿轮旋转式,上车体除冰机构的齿轮也跟着旋转。通过齿轮机构传动,实现对滚齿轮同步对滚。为对滚刀具提供高效稳定的动力输出。3.2.3 除冰机构电机选择由于网络上并没有相关的完整计算的论文,而且此项目并非特别普及,所以电机选择是很大的难题,没有相关资料可以借鉴。又因为,我们学校的老师和同学们之前并未对此作过深入的研究,在本校也无法找到相关人员来解答和说明此问题。在此情况下,通过导师在机械创新设计大赛中积累的经验,建议采用电机为300W。为除冰机构提供动力源。 3.3 整机三维装配图图3-11 右端后侧除冰机三维图 图3-12 左端后侧除冰机三维视图图3-13 除冰机正面三维视图图3-14 除冰机俯视图图315 除冰机仰视三维视图第4章 功能及创新点本设计作品的主要功能及特点如下:1、该机采用对滚刀具的除冰原理,结构紧凑,体积小,质量轻,噪音小,无污染,使用灵活方便,适合在输电线上除冰;2、拥有减震机构,具有一定越障能力,使用安全可靠,便于维修;3、输电线直径可以在2040mm之间调整,覆冰直径3080mm,外型尺寸(长宽高:330160380mm);4、车轮带有凹槽,具有良好的导向性,使得除冰机在输电线上行走时不易倒转;5、两轮之间采用链传动实现同步行走;6、外观造型美观,适合家庭用户的审美要求;7、采用滚刀刀具,除冰效果理想,而且成本较低,是输电线除冰机的首选产品。该设计作品的主要创新点如下:1、采用对滚刀具除冰,节省能源,无污染(噪音、废气),不易引起电线共振或舞动;2、采用齿轮机构传动(实现减速),提高整机的工作效率,解决了从电动机输出转速过高的问题;3、采用具有减震的上车体,具有一定的越障能力;4、外观造型新颖,后端为大倒角设计,可减轻重量,适合在输电线上除冰使用。总结毕业设计是对我大学四年学习成果的总结,是对我将来的学习、工作最为有力的一次锻炼。它促进我将所学的理论知识与实践有机的结合,并且深深的体会到了自己所学专业的博大精深。尽管在设计中遇到许多难题与不曾接触过的东西,但在老师的帮助和我的刻苦努力下都一一克服,并学到了许多的实践经验。尽管我所设计的东西可能还有许多欠缺,但是我确实在此次设计中学得了很多东西,它将对我以后的学习与工作产生很大的影响。我这次设计的题目是:输电线除冰机设计,在整个设计过程中做了如下工作:1、查阅有关的文献资料,了解当今国内外输电线除冰机,巡线机器人的发展现状及发展前景,也看到了创新设计巨大发展潜力。2、根据输电线除冰机的用途,对输电线除冰机的传动系统以及执行机构进行了充分的论证,最终确定了方案。3、对典型零件如直齿轮、轴进行了详细的设计计算,并进行了校核。4、对所用轴承进行了强度校核和以及寿命计算。5、零件的图纸以及装配图设计。6、进行了输电线除冰机的三维设计及建模通过这次毕业设计,使我具有了严谨、认真的工作作风,为自己今后学习更多的专业知识奠定了坚实的基础,也为我将所学的知识应用到实际生产中提供了一次很好的锻炼机会,必将对我的将来产生深远的影响。参考文献1 Sawada J,Kusumoto K,Munakata T. A Mobile Robot for Inspection of Power Transmission LinesJ. IEEE Trans on Power Delivery,1991,6(1):309-315.2 Montambault S,Cote J,St LouisM.Preliminary Results on the Development of a Teleoperated Compact Trolley for Live- lineWorkingJ.In:Proceedings of IEEE 9th International Conference on Transmission and Distribution Construction Operation and Live-LineMaintenance Piscataway(NJ): IEEE,2000:21-27.3 Montambault S,Pouliot N. The HQ line Rover:Contributing to Innovation in

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论