平面向量的基本定理及坐标表示_第1页
平面向量的基本定理及坐标表示_第2页
平面向量的基本定理及坐标表示_第3页
平面向量的基本定理及坐标表示_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 4 平面向量的基本定理及坐标表示 平面向量的基本定理及坐标表示 第 4 课时 平面向量基本定理 教学目的: ( 1)了解平面向量基本定理; ( 2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法; ( 3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达 . 教学重点:平面向量基本定理 . 教学难点:平面向量基本定理的理解与应用 . 授课类型:新授课 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1实数与向量的积: 实数 与向量的积是一个向量,记作: ( 1) |=| ;( 2) 0 时 与方向相同; 0时 与方向相反; =0 时 = 2运算定律 2 / 4 结合律: ()=() ;分配律: (+)=+ ,(+)=+ 3.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数 ,使 =. 二、讲解新课: 平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数 1 ,2 使 =1+2. 探究: (1)我们把不共线向量、叫 做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线; (3)由定理可将任一向量 a 在给出基底、的条件下进行分解; (4)基底给定时,分解形式惟一 .1 , 2 是被,唯一确定的数量 三、讲解范例: 例 1 已知向量,求作向量 +3. 例 2 如图 ABcD的两条对角线交于点 m,且 =, =,用,表示,和 例 3已知 ABcD的两条对角线 Ac与 BD交于 E, o是任意一点,求证: +=4 3 / 4 例 4( 1)如图,不共线, =t(tR)用,表示 . ( 2)设不共线,点 P 在 o、 A、 B 所在的平面内,且 .求证:A、 B、 P 三点共线 . 例 5 已知 a=2e1-3e2, b=2e1+3e2,其中 e1, e2不共线,向量 c=2e1-9e2,问是否存在这样的实数与 c 共线 . 四、课堂练习: 1.设 e1、 e2是同一平面内的两个向量,则有 () 、 e2一定平行 、 e2的模相等 c.同一平面内的任一向量 a 都有 a=e1+e2( 、 R) D.若 e1、 e2 不共线,则同一平面内的任一向量 a 都有a=e1+ue2( 、 uR) 2.已知矢量 a=e1-2e2, b=2e1+e2,其中 e1、 e2不 共线,则a+b与 c=6e1-2e2 的关系 A.不共线 B.共线 c.相等 D.无法确定 3. 已知向量 e1 、 e2 不 共 线 , 实 数 x 、 y 满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则 x-y 的值等于 () - 4.已知 a、 b 不共线,且 c=1a+2b(1 , 2R) ,若 c与 b 共线,则 1=. 5.已知 1 0, 2 0, e1、 e2 是一组基底,且a=1e1+2e2 ,则 a 与 e

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论