几何学发展简况_第1页
几何学发展简况_第2页
几何学发展简况_第3页
几何学发展简况_第4页
几何学发展简况_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

几何学发展简况 “几何 ”这个词在汉语里是 “多少? ”的意思,但在数学里 “几何 ”的涵义就完全不同了。 “几何 ”这个词的词义来源于希腊文,原意是土地测量,或叫测地术。 几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念, 并且逐步认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。 正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。 几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃 及、古印度、古希腊都是几何学的重要发源地。 大量出土文物证明,在我国的史前时期,人们已经掌握了许多几何的基本知识,看一看远古时期人们使用过的物品中那许许多多精巧的、对称的图案的绘制,一些简单设计但是讲究体积和容积比例的器皿,都足以说明当时人们掌握的几何知识是多么丰富了。 几何之所以能成为一门系统的学科,希腊学者的工作曾起了十分关键的作用。两千多年前的古希腊商业繁荣,生产比较发达,一批学者热心追求科学知识,研究几何就是最感兴趣的内容,在这里应当提及的是哲学家、几何学家柏拉图和哲学家亚里士多德对 发展几何学的贡献。 柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导逐步趋向于系统和严密的方向发展。柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的 “三段论 ”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等几何学中,仍是运用三段论的形式来进行推理。 但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。 真正把几何总结成一门具有比较严密理论的学科的, 是希腊杰出的数学家 欧几里得 。 欧几里得在公元前 300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些几何原理。他非常详尽的搜集了当时所能知道的一切几何事实,按 照柏拉图和亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨著 几何原本 。 几何原本的伟大历史意义在于,它是用公理法建立起演绎的数学体系的最早典范。在这部著作里,全部几何知识都是从最初的几个假设除法、运用逻辑推理的方法展开和叙述的。也就是说,从几何原本发表开始,几何才真正成为了一个有着比较严密的 理论系统和科学方法的学科。 欧几里得的几何原本 欧几里得的几何原本共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术得里论;最后讲述立体几何的内容。 从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在几何原本里了。因此长期以来,人们都认为几何原本 是两千多年来传播几何知识的标准教科书。 属于几何原本内容的几何学,人们把它叫做欧几里得几何学,或简称为欧式几何。 几何原本最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。几何原本第一卷列有 23个定义, 5条公理, 5条公设。(其中最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于 “平行线理论 ”的讨论,并最终诞生了非欧几何。) 这些定义、公理、公设就是几何原本全书的基础。全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。比如后面出现的每一个定理都写明什么是已知、什么是求证。都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项 ;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。 欧几里得几何原本的诞生在几何学发展的历史中具有重要意义。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。 从欧几里得发表几何原本到现在,已经过去了两千多年,尽管科学技术日新月异,但是欧几里得几何学仍旧是中学生学习数学基础知识的好教材。 由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点, 在长期的实践中表明,它巳成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。 少年时代的 牛顿 在剑桥大学附近的夜店里买了一本几何原本,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对 笛卡儿 的 “坐标几何 ”很感兴趣而专心攻读。后来,牛顿于 1664年 4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说: “因为你的几何基础知识太贫乏,无论怎样用功也是不行的。 ”这席谈话对牛顿的震动很大。于是,牛顿又重新把几何原本从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。 近代物理学的科学巨星 爱因斯坦 也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候 “几何学的这种明晰性和可靠性给我留下了一种难以形容的印象 ”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变 原理。 在几何学发展的历史中, 欧几里得的几何原本起了重大的历史作用。这种作用归结到一点,就是提出了几何学的 “根据 ”和它的逻辑结构的问题 。在他写的几何原本中, 就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。 但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在几何原本中提出几何学的 “根据 ”问题并没有得到彻底的解决, 他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这 样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了 “连续 ”的概念,但是在几何原本中从未提到过这个概念。 现代几何公理体系 人们对几何原本中在逻辑结果方面存在的一些漏洞、破绽的发现,正是推动几何学不断向前发展的契机。最后德国数学家 希尔伯特 在总结前人工作的基础上,在他 1899年发表的几何基础一书中提出了 一个比较完善的几何学的公理体系。这个公理体系就被叫做希尔伯特公理体。 希尔伯特不仅提出了 个完善的几何体系,并且还提出了建立一个公理系统的原则。就是在一个几何公理系统中,采取哪些公理,应该包含多少条公理,应当考虑如下三个方面的问题: 第一,共存性 (和谐性 ),就是在一个公理系统中,各条公理应该是不矛盾的,它们和谐而共存在同一系统中。 第二, 独立性,公理体系中的每条公理应该是各自独立而互不依附的,没有一条公理是可以从其它公理引伸出来的。 第三,完备性,公理体系中所包含的公理应该是足够能证明本学科的任何新命题。 这种用公理系统来定义几何学中的基本对象和它的关系的研究方法,成了数学中所谓的“公理化方法 ”,而把欧几里得在几何原本提出的体系叫做古典公理法。 公理化的方法给几何学的研究带来了一个新颖的观点,在公理法理论中,由于基本对象不予定义,因此就不必探究对象的直观形象是什么,只专门研究抽象的对象之间的关系、性质。从公理法的 角度看,我们可以任意地用点、线、面代表具体的事物,只要这些具体事物之间满足公理中的结合关系、顺序关系、合同关系等,使这些关系满足公理系统中所规定的要求,这就构成了几何学。 因此,凡是符合公理系统的元素都能构成几何学,每一个几何学的直观形象不止只有 个,而是可能有无穷多个,每一种直观形象我们把它叫做几何学的解释,或者叫做某种几何学的模型。平常我们所熟悉的几何图形,在研究几何学的时候,并不是必须的,它不过是一种直观形象而已。 就此,几何学研究的对象更加广泛了,几何学的含义比欧几里得时代更为抽象。 这些,都对近代几何学的发展带来了深远的影响。 非欧几何的来源 非欧几何学是一门大的数学分支,一般来讲 ,他有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里的几何学不同的几何学,狭义的非欧几何只是指罗式几何来说的,至于通常意义的非欧几何,就是指罗式几何和黎曼几何这两种几何。 欧几里得 的 几何原本 提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。 有些数学家还注意到欧几里得在几何原本一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在几何原本中可以不依靠第五公设而推出前二十八个命题。 因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来 证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于 “平行线理论 ”的讨论。 由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明? 到了十九世纪二十年代,俄国喀山大学教授 罗巴切夫斯基 在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题 ,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。 但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论: 第一,第五公设不 能被证明。 第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。 这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。 从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。 几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶 雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研 究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲 数学家鲍耶 法尔卡什认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶 雅诺什坚持为发展新的几何学而辛勤工作。终于在 1832年,在他的父亲的一本著作里,以附录的形式发表了研究结果。 那个时代被誉为 “数学王子 ”的高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。 罗式几何 罗式几何学的公理系统和欧式几何学不同的地方仅仅是把欧式 几何平行公理用 “从直线外一点,至少可以做两条直线和这条直线平行 ”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。 我们知道, 罗式几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题 ,在欧式几何中如果是正确的,在罗式几何中也同样是正确的。 在欧式几何中,凡涉及到平行公理的命题,再罗式几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明: 欧式几何 同一直线的垂线和斜线相交。 垂直于同一直线的两条直线或向平行。 存在相似的多边形。 过不在同一直线上的三点可以做且仅能做一个圆。 罗式几何 同一直线的垂线和斜线不一定相交。 垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。 不存在 相似的多边形。 过不在同一直线上的三点,不一定能做一个圆。 从上面所列举得罗式几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗式几何中的一些几何事实没有象欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观 “模型 ”来解释罗式几何是正确的。 1868年,意大利数学家贝特拉 米发表了一篇著名论文非欧几何解释的尝试,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以 “翻译 ”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。 人们既然承认欧几里是没有矛盾的,所以也就自然承认非欧几何没有矛盾了。直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为 “几何学中的哥白尼 ”。 黎曼几何 欧氏几何与罗氏几何中 关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧式几何讲 “过直线外一点有且只有一条直线与已知直线平行 ”。罗氏几何讲“过直线外一点至少存在两条直线和已知直线平行 ”。那么是否存在这样的几何 “过直线外一点,不能做直线和已知直线平行 ”?黎曼几何就回答了这个问题。 黎曼几何是德国数学家黎曼创立的。他在 1851年所作的一篇论文论几何学作为基础的假设中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。 黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共 点 (交点 )。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限演唱,但总的长度是有限的。黎曼几何的模型是一个经过适当 “改进 ”的球面。 近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰是和黎曼几何的观念是相似的。 此外,黎曼几何在数学中也是一个重要的工具。它不仅是微分几何的基 础,也应用在微分方程、变分法和复变函数论等方面。 三种几何的关系 欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。 在我们这个不大不小、不远不近的空间里,也就是在我们的日常生活中,欧式几何是适用的;在宇宙空间中或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些。 解析几何的产生 十六世纪以后,由于生产和科学技术的发 展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。 1637年,法国的哲学家和数学家 笛卡尔 发表了他的著作方法论,这本书的后面有三篇附录,一篇叫折光学,一篇叫流星学,一篇叫几何学。当时的这个 “几何学 ”实际上指的是数学,就像我国古代 “算术 ”和 “数学 ”是一个意思一样。 笛卡尔的几何学共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和 “超立体 ”的作图,但他实际是代数问题,探讨方程的根的性质。后世的 数学家和数学史学家都把笛卡尔的几何学作为解析几何的起点。 从笛卡尔的几何学中可以看出,笛卡尔的中心思想是建立起一种 “普遍 ”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。 为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。 x,y 的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。 具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。 解析几何的产生并不是偶然的。在笛卡尔写几何学以前,就有许多学者研究过用两 条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个 “坐标 ”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。 在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。 费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的 “书 ”无意发表。但从他的通信中知道,他早在笛卡尔发表几何学以前,就已写了关于解析几何的小文,就已经有了解析几何的思 想。只是直到 1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。 笛卡尔的几何学,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。 解析几何的基本内容 在解析几何中,首先是建立坐标系。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系 oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱 面坐标。 坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。 解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价 “数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了 变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了, ” 解析几何的应用 解析几何又分作平面解析几何和空间解析几何。 在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。 在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面 。 椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。 总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的 方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。 运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译 ”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。 坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。 微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说, 微分几何是研究一般的曲线和曲面在 “小范围 ”上的性质的数学分支学科。 微分几何的产生 微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家 欧拉 。 1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。 十八世纪初,法国数学家 蒙日 首先把微积分应用到曲线和曲面的研究中去,并于 1807年出版了它的分析在几何学上的应用一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。 1827年, 高斯 发表了关于曲面的一般研究的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了 150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。 1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了 埃尔朗根纲领 ,用变换群对已有的几何学进行了分类。在埃尔朗根纲领发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于 1878年阿尔方的学位论文,后来 1906年起经以威尔辛斯基为代表的美国学派所发展, 1916年起又经以富比尼为首的意大利学派所发展。 随后,由 于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。 微分几何学的基本内容 微分几何学以光滑曲线 (曲面 )作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。 在曲面上有两条重要概念,就是曲面上的距 离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。 在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓 “活动标形的方法 ”。对任意曲线的 “小范围 ”性质的研究,还可以用拓扑变换把这条曲线 “转化 ”成初等曲线进行研究。 在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷 小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。 近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。 微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。 几何空间 空间的概念复我们来说是熟悉的。我们生活的 空间是包含在上下、前后、左右之中的。如果需要描述我们所处的空间中的某一位置,就需要用三个方向来表示,这个意思也就是说空间是 “ 三维 ”的。 在数学中经常用到 “ 空间 ” 这个概念,它指的范围很广,一般指某种对象(现象、状况、图形、函数等)的任意集合,只要其中说明了 “ 距离 ” 或 “ 邻域 ” 的概念就可以了。而所谓 “ 维 ” 的概念,如果我们所谈到的只是简单的几何图形,如点、线、三角形和多边形 ,那么理解维的概念并不困难:点的维数是零;一条线段的维数是一;一个三角形的维数是二;一个立方体内所有点的集合的是三维的。 如 果把维度的概念扩充到任意点集合上去的时候,维的概念就不那么容易理解了。比如,什么是四维空间呢?关于四维空间,我国古代有一些说法是很有意思的。最典型的就是对于 “ 宇宙 ” 两字的解释,古人的说法是 “ 四方上下曰宇,古往今来曰宙 ” ,用现在的话说就是,四维空间是在三维空间的基础上再加上时间维作为并列的第四个坐标。 爱因斯坦 认为每一瞬间三维空 间中的所有实物在占有一定的位置就是四维的。比如我们所住的房子,就是由长度、宽度、高度、和时间制约的。所谓时间制约就是从盖房的时候算起,直到最后房子倒塌为止。 根据上边的说法,几何学和其它科学研究的 n 维空间的概念,就可以理解成由空间的点的 n 个坐标决定。这个空间的图形就定义成满足这个或那个条件的点的轨迹。一般来说,某个图形由 n 个条件给出,那么这个图形就是某个 n 维的点。至于这个图形到底是什么形象,我们是否能想象得出来,对数学来说是无关紧要的。 几何学中的 “ 维 ” 的概念,实际上就是构成空间的基 本元素,也就是点的活动的自由度,或者说是点的坐标。所谓 n 维空间,经常是用来表示超出通常的几何直观范围的数学概念的一种几何语言。 从上面的介绍可以看出,几何中的元素可用代数中的是数来表示,代数问题如果通过几何的语言给与直观的描述,有时候可以给代数问题提示适当的解法。比如解三元一次方程组,就可以认为是求解三个平面的交点问题。 代数几何学的内容 用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何。代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数 曲面。 代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究。解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具。 代数几何的研究是从 19世纪上半叶关于三次或更高次的平面曲线的研究开始的。例如,阿贝尔在关于椭圆积分的研究中,发现了椭圆函数的双周期性,从而奠定了椭圆曲线理论基础。 黎曼 1857年引入并发展了代数函数论,从而使代数曲线的研究获得了一个关键性的突破。黎曼把他的函数定义在复数平面的某种多层复迭平面上,从而引入了所谓黎曼曲面的概念。运用这个概念,黎曼定义了代数曲线的一个最重要的数值不变量:亏格。这也是代数几何历史上出现的第一个绝对不变量。 在黎曼之后,德国数学家诺特等人用几何方法获得了代数曲线的许多深刻的性质。诺特还对代数曲面的性质进行了研究。他的成果给以后意 大利学派的工作建立了基础。 从 19世纪末开始,出现了以卡斯特尔诺沃、恩里奎斯和塞维里为代表的意大利学派以及以庞加莱、皮卡和莱夫谢茨为代表的法国学派。他们对复数域上的低维代数簇的分类作了许多非常重要的工作,特别是建立了被认为是代数几何中最漂亮的理论之一的代数曲面分类理论。但是由于早期的代数几何研究缺乏一个严格的理论基础,这些工作中存在不少漏洞和错误,其中个别漏洞直到目前还没有得到弥补。 20世纪以来代数几何最重要的进展之一是它在最一般情形下的理论基础的建立。 20世纪 30年代,扎里斯基和范 德 瓦尔登等首先在代数几何研究中引进了交换代数的方法。在此基础上,韦伊在 40年代利用抽象代数的方法建立了抽象域上的代数几何理论,然后 20世纪 50年代中期,法国数学家塞尔把代数簇的理论建立在层的概念上,并建立了凝聚层的上同调理论,这个为格罗腾迪克随后建立概型理论奠定了基础。概型理论的建立使代数几何的研究进入了一个全新的阶段。 代数几何学中要证明的定理多半是纯几何的,在论证中虽然使用坐标法,但是采用坐标法多建立在射影坐标系的基础上。 在解析几何中,主要是研究一次曲线和曲面、二次曲线和曲面。而在代数几 何中主要是研究三次、四次的曲线和曲面以及它们的分类,继而过渡到研究任意的代数流形。 代数几何与数学的许多分支学科有着广泛的联系,如数论、解析几何、微分几何、交换代数、代数群、拓扑学等。代数几何的发展和这些学科的发展起着相互促进的作用。同时,作为一门理论学科,代数几何的应用前景也开始受到人们的注意,其中的一个显著的例子是代数几何在控制论中的应用。 近年来,人们在现代粒子物理的最新的超弦理论中已广泛应用代数几何工具,这预示着抽象的代数几何学将对现代物理学的发展发挥重要的作用。 射影 几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。 射影几何的发展简况 十七世纪,当 笛卡儿 和费尔马创立的 解析几何 问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前 200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在 4世纪帕普斯的著作中,出现了帕普斯定理。 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。 射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪 。在 17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家 笛沙格和帕斯卡。 笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作试论圆锥曲线和平面的相交所得结果的初稿,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。 迪沙格在他的著 作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。 用他的名字命名的迪沙格定理: “如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立 ”,就是射影几何的基本定理。 帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理: “内接于二次曲线的六边形的三双对边的交点共 线。 ”这条定理叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。 1658年,他写了圆锥曲线论一书,书中很多定理都是射影几何方面的内容。迪沙格和他是朋友,曾经敦促他搞透视学方面的研究,并且建议他要把圆锥曲线的许多性质简化成少数几个基本命题作为目标。帕斯卡接受了这些建议。后来他写了许多有关射影几何方面的小册子。 不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质 (长度、角度、面积 )。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新 的几何体系射影几何。他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。 射影几何的主要奠基人是 19世纪的彭赛列。他是 画法几何 的创始人 蒙日 的学生。蒙日带动了他的许多学生用综合法研究几何。由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。 1822年,彭赛列发表了射影几何的第一部系统著作。他是认识到射影几何是一个新的数学分支的第一个数学家。他通过几何方法引进无穷远虚圆点,研究了配极对应并用它来确立对偶原理。稍后,施泰纳研究了利用简单图形产生较复杂图形的方法,线素二次曲线概念也是他引进的。为了摆脱坐标系对度量概念的依赖,施陶特通过几何作图来建立直线上的点坐标系,进而使交比也不依赖于长度 概念。由于忽视了连续公理的必要性,他建立坐标系的做法还不完善,但却迈出了决定性的一步。 另 方面,运用解析法来研究射影几何也有长足进展。首先是莫比乌斯创建一种齐次坐标系,把变换分为全等,相似,仿射,直射等类型,给出线束中四条线交比的度量公式等。接着,普吕克引进丁另一种齐次坐标系,得到了平面上无穷远线的方程,无穷远圆点的坐标。他还引进了线坐标概念,于是从代数观点就自然得到了对偶原理,并得到了关于一般线素曲线的一些概念。 在 19世纪前半叶的几何研究中,综合法和解析法的争论异常激烈;有些数学家完全 否定综合法,认为它没有前途,而一些几何学家,如沙勒,施图迪和施泰纳等,则坚持用综合法而排斥解析法。还有一些人,如彭赛列,虽然承认综合法有其局限性,在研究过程中也难免借助于代数,但在著作中总是用综合法来论证。他们的努力使综合射影几何形成一个优美的体系,而且用综合法也确实形象鲜明,有些问题论证直接而简洁。 1882年帕施建成第一个严格的射影几何演绎体系。 射影几何学的发展和其他数学分支的发展有密切的关系,特别是 “群 ”的概念产生以后,也被引进了射影几何学,对这门几何学的研究起了促进作用。 把各种几何 和变换群相联系的是克莱因,他在 埃尔朗根纲领 中提出了这个观点,并把几种经典几何看作射影几何的子几何,使这些几何之间的关系变得十分明朗。这个纲领产生了巨大影响。但有些几何,如黎曼几何,不能纳入这个分类法。后来嘉当等在拓广几何分类的方法中作出了新的贡献。 射影几何学的内容 概括的说,射影几何学是几何学的一个重要分支学科,它是专 门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学。 在射影几何学中,把无穷远点看作是 “理想点 ”。通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以 统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把 “过一点作一直线 ”和 “在一直线上取一点 ”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一 图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。 这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。 研究在射影变换下二次曲线的不变性质,也是射影 几何学的一项重要内容。 如果就几何学内容的多少来说,射影几何学 仿射几何学 欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。比如在欧氏几何学里可以讨论仿射几何学的对象 (如简比、平行性等 )和射影几何学的对象 (如四点的交比等 ),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。 1872年,德国数学家克莱因在爱尔朗根大学提出著名的爱尔朗根计划书中提出用变换群对几何学进行分类,就是凡是一种变换,它的全体能组成 “群 ”,就有相应的几何 学,而在每一种几何学里,主要研究在相应的变换下的不变量和不变性。 普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。 分形几何的产生 客观自然界中 许多事物,具有自相似的 “层次 ”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。 客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特征长度。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这叫做 “无标度性 ”的问题。 如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是 十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助 “无标度性 ”解决问题,湍流中高漩涡区域,就需要用分形几何学。 在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题这依赖于测量时所使用的尺度。 如果用公里作测 量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的 “无标度 ”区,长度不是海岸线的定量特征,就要用分维。 数学家寇赫从一个正方 形的 “岛 ”出发,始终保持面积不变,把它的 “海岸线 ”变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论