



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4章 锐角三角函数4.2 正 切课题4.2 正 切授课人教学目标知识技能 1.理解锐角的正切概念.2.熟记特殊锐角的正切值.3.会用计算器求非特殊锐角的正切值数学思考当直角三角形中一锐角的度数确定时,这个锐角的对边与邻边的比值也确定问题解决在利用相似三角形知识测量、计算物体高度的过程中,联想函数概念,观察、发现、理解三角函数的概念情感态度培养良好的数形结合能力,体验锐角正切值的应用教学重点锐角正切的概念、符号、表示方法及锐角正切值的相关计算.教学难点锐角正切的概念、特殊锐角的正切值授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.直角三角形的两锐角_.2.直角三角形斜边上的中线等于斜边的_.3.若直角三角形的两直角边分别为a,b,斜边为c,则有_.4.直角三角形中,锐角a的正弦等于_,锐角a的余弦等于_.5.sin30_,sin45_,sin60_. cos30_,cos45_,cos60_学生回忆并回答,为本课的学习提供迁移或类比方法.活动一:创设情境导入新课【课堂引入】1.前面我们学习了锐角正弦、余弦的概念及特殊角的正弦、余弦值等知识,那么在直角三角形中,某一锐角除对边与斜边的比值,邻边与斜边的比值是定值外,还有其他的边的比值是定值吗?比如说对边与邻边的比值?这节课我们就来探究这个问题!2.如图426,由rtab1c1rtab2c2rtab3c3得k.图426可见,在rtabc中,当锐角a确定后,无论直角三角形是大是小,其对边与邻边的比值是唯一确定的鼓励学生独立解决问题,让学生感受当直角三角形的锐角确定后,其对边与邻边的比值都相等.活动二:实践探究交流新知【探究1】 锐角的正切的概念(在课堂引入的基础上多媒体出示)为了探索新的测量方法,在直角三角形中定义锐角正切,为测量开辟了新的领域:如图427,在rtabc中,c90,则tana_.(1)弄清“对边”、“邻边”的含义,在rtabc中,c90,对a来说,_是对边、_是邻边;而对b来说,_是邻边、_是对边,无论怎样,“边”一定要分清.图427(2)为了记忆方便,可以用口诀进行记忆,即“正切等于_”.(3)锐角的正切符号与锐角的正弦、余弦符号一样,是一个整体,不能看成是tan和a相乘的关系,它的整体表示_的比.(4)会求锐角三角函数的值在直角三角形中,知道两边长,用勾股定理求第三边长,再用锐角三角函数的定义求值.【探究2】 特殊锐角的正切值(类比上一节课引入多媒体出示)如图428,观察一副三角板:每个三角板上有几个锐角?分别是多少度?图428(1)tan30等于多少?与同伴交流你是怎么想的?又是怎么做的?(2)tan45,tan60等于多少?归纳:tan30,tan451,tan60.【探究3】 非特殊锐角的正切值的求法(1)对于非特殊锐角的正弦,余弦值我们是通过什么方法求出的?能用同样的方法求非特殊锐角的正切值吗?(2)已知锐角的正切值能求锐角吗?操作按键的步骤又是什么?归纳:(1)已知角度求正切值,按键为.(2)已知锐角的正切值求角度按键为:.【探究4】 锐角三角函数的概念归纳:任意给定一个锐角,都有唯一确定的比值sin(或cos,tan)与它对应,并且我们还知道,当锐角变化时,它的比值sin(或cos,tan)也随之变化,因此,我们把锐角的正弦、余弦和正切统称为角的锐角三角函数本活动的设计意图是引导学生通过自主探究,合作交流,使其对具体问题的认识从形象到抽象,训练学生能从实际问题中抽象出锐角三角函数的概念.活动三:开放训练体现应用【应用举例】例1教材p119例题 计算:tan45tan230tan260.变式一计算6tan452cos60的结果是(d)a.4 b4c5 d5图429变式二如图429所示,在48的网格中,每个小正方形的边长都为1,abc的三个顶点都在格点上,则tanbac的值为(a)a. b1 c. d.解析 过点b作bdac于点d,由勾股定理可得bac所在的直角三角形的两条直角边长分别为,tanbac.变式三在rtabc中,c90,sina,则tanb的值为(b)a. b. c. d.解析 由题意,设bc4x,则ab5x,ac3x,tanb.认真审题是解题的关键,通过运用三角函数的定义求三角函数值,学会解决简单的问题采取启发式教学发挥学生的潜能.【拓展提升】1.通过添加辅助线构造直角三角形求锐角的正切值例2如图4210,在四边形abcd中,e,f分別是ab,ad的中点,若ef2,bc5,cd3,则tanc等于(b)a.b.c.d.图4210 解析 如图4211,连接bd.e,f分别是ab,ad的中点bd2ef4.bc5,cd3,bcd是直角三角形tanc.图42112.锐角正切概念的简单应用例3如图4212,在等腰直角三角形abc中,c90,ac6,d是ac上一点,若tandba,则ad的长为(a)图4212a.2 b. c. d1解析 如图4213,过点d作deab,垂足为e.易证ade为等腰直角三角形,aede.在rtbde中,tandba,所以be5ae.在等腰直角三角形abc中,c90,ac6,由勾股定理可求出ab6 ,所以ae.在等腰直角三角形ade中,用勾股定理可求出ad的长为2.图4213教师引导学生分析,找出思路后,让学生解答. 活动四:课堂总结反思【当堂训练】1.教材p119练习中的t1,t2,t3,t4.2.教材p120习题4.2中的t1,t2,t3.当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出.【教学反思】授课流程反思本节课通过类比正弦概念的学习,引出正切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灯光考试有哪几项题目及答案
- 田径晋级考试题目及答案
- 2025年公需科目考试试题库及答案
- 2025年公需科目诚信体系建设考试试题(含答案)
- 2025秋季开学第一课校长致辞:在金秋的起点上奔赴更“有品”的自己
- 2025年高危儿管理专科考核试题及答案
- 2025年高级美容师理论基础知识资格考试复习题库和答案
- 2025年高级会计师之高级会计实务通关考试题库带答案解析
- 计划与建设管理办法
- 论文警务化管理办法
- 2022中华慈善日PPT课件模板
- 汽车维修高级工技师理论考核试题库与答案
- DB33_T 2273-2020商业秘密保护管理与服务规范(高清正版)
- 画法几何授课计划-供参考
- 新人教版部编本四年级上册语文全册教材分析与教学建议(课堂PPT)
- 典范英语5a_01
- 常见急危重症的快速识别要点与处理技巧
- (完整版)GHS标识(高清)
- 中英文版送货单
- 混凝土结构设计原理教案(参考)
- 中英文验货报告模板
评论
0/150
提交评论